Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 5(1): 1367, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513728

ABSTRACT

Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.


Subject(s)
Neoplasms , Proteomics , Humans , Multiomics , Neoplasms/genetics , Neoplasms/metabolism , Machine Learning , Cell Line
2.
Hum Mol Genet ; 29(9): 1520-1536, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32337552

ABSTRACT

Here we define a ~200 Kb genomic duplication in 2p14 as the genetic signature that segregates with postlingual progressive sensorineural autosomal dominant hearing loss (HL) in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein coding), in addition to four uncharacterized long non-coding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to HL, such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 HL.


Subject(s)
Blood Proteins/genetics , Calcineurin/genetics , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Adolescent , Adult , Animals , Calcineurin/blood , Child , Chromosome Duplication/genetics , Chromosomes, Human, Pair 2/genetics , DNA Copy Number Variations/genetics , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Hearing Loss, Sensorineural/blood , Hearing Loss, Sensorineural/pathology , Heterozygote , Humans , Male , Membrane Proteins/blood , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Phosphoproteins/blood , RNA, Messenger/blood , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Young Adult
3.
Nat Neurosci ; 20(1): 24-33, 2017 01.
Article in English | MEDLINE | ID: mdl-27893727

ABSTRACT

Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. We report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair cell stereocilia, and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS, TMIE, TMC1 and TMC2. We show here that the second ion channel is expressed at the apical surface of hair cells and that it contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca2+ concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distributions.


Subject(s)
Calcium/metabolism , Hair Cells, Auditory/cytology , Mechanotransduction, Cellular/physiology , Stereocilia/metabolism , Animals , Hair/metabolism , Mechanotransduction, Cellular/genetics , Membrane Proteins/metabolism , Mice, Knockout , Mutation/genetics , Stereocilia/genetics
4.
Exp Cell Res ; 347(1): 171-183, 2016 09 10.
Article in English | MEDLINE | ID: mdl-27492485

ABSTRACT

Loss-of-function studies have identified Porcupine (PORCN) and Wntless (WLS) as essential mediators of Wnt secretion and signaling. Whereas PORCN is thought to palmitoylate Wnt proteins, WLS is believed to transport palmitoylated Wnt proteins to the cell surface. However, little is known about how these two proteins cooperate to regulate Wnt palmitoylation, trafficking, secretion, and signaling. We first investigated possible interactions between PORCN, WLS, and WNT1, by carrying out co-immunoprecipitation studies. These studies demonstrate the existence of a complex containing PORCN and WLS. They further show that PORCN and WLS compete for binding to WNT1. Then, we used gain-of-function studies to investigate the cooperation between PORCN and WLS as well as possible biochemical interactions between PORCN, WLS, and WNT1. Consistent with the proposed roles for PORCN and WLS, we show that overexpression of PORCN promotes palmitoylation of WNT1 while overexpression of WLS does not. Overexpression of PORCN enhances the ability of WLS to promote WNT1 trafficking to the cell surface as well as secretion, but decreases the ability of WLS to activate WNT1 signaling in target cell. These observations suggest that the levels of WNT1 on the cell surface and in the media are not the sole determinants of the activation of Wnt signaling in target cells.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Wnt Signaling Pathway , Wnt1 Protein/metabolism , Acyltransferases , Animals , Autocrine Communication/drug effects , COS Cells , Chickens , Chlorocebus aethiops , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Immunoprecipitation , Lipoylation/drug effects , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Paracrine Communication/drug effects , Protein Binding/drug effects , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL