Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Viruses ; 15(7)2023 07 23.
Article in English | MEDLINE | ID: mdl-37515296

ABSTRACT

Vesicle-encapsulated nonenveloped viruses are a recently recognized alternate form of nonenveloped viruses that can avoid immune detection and potentially increase systemic transmission. Avian orthoreoviruses (ARVs) are the leading cause of various disease conditions among birds and poultry. However, whether ARVs use cellular vesicle trafficking routes for egress and cell-to-cell transmission is still poorly understood. We demonstrated that fusogenic ARV-infected quail cells generated small (~100 nm diameter) extracellular vesicles (EVs) that contained electron-dense material when observed by transmission electron microscope. Cryo-EM tomography indicated that these vesicles did not contain ARV virions or core particles, but the EV fractions of OptiPrep gradients did contain a small percent of the ARV virions released from cells. Western blotting of detergent-treated EVs revealed that soluble virus proteins and the fusogenic p10 FAST protein were contained within the EVs. Notably, virus particles mixed with the EVs were up to 50 times more infectious than virions alone. These results suggest that EVs and perhaps fusogenic FAST-EVs could contribute to ARV virulence.


Subject(s)
Extracellular Vesicles , Orthoreovirus, Avian , Extracellular Vesicles/metabolism , Viral Proteins/metabolism
2.
Cell ; 186(13): 2880-2896.e17, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37327785

ABSTRACT

Sperm motility is crucial to reproductive success in sexually reproducing organisms. Impaired sperm movement causes male infertility, which is increasing globally. Sperm are powered by a microtubule-based molecular machine-the axoneme-but it is unclear how axonemal microtubules are ornamented to support motility in diverse fertilization environments. Here, we present high-resolution structures of native axonemal doublet microtubules (DMTs) from sea urchin and bovine sperm, representing external and internal fertilizers. We identify >60 proteins decorating sperm DMTs; at least 15 are sperm associated and 16 are linked to infertility. By comparing DMTs across species and cell types, we define core microtubule inner proteins (MIPs) and analyze evolution of the tektin bundle. We identify conserved axonemal microtubule-associated proteins (MAPs) with unique tubulin-binding modes. Additionally, we identify a testis-specific serine/threonine kinase that links DMTs to outer dense fibers in mammalian sperm. Our study provides structural foundations for understanding sperm evolution, motility, and dysfunction at a molecular level.


Subject(s)
Sperm Motility , Sperm Tail , Male , Animals , Cattle , Sperm Tail/chemistry , Sperm Tail/metabolism , Semen , Microtubules/metabolism , Axoneme/chemistry , Spermatozoa , Mammals
3.
Sci Adv ; 8(1): eabj7615, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34985963

ABSTRACT

Enteroviruses are globally prevalent human pathogens responsible for many diseases. The nonstructural protein 2C is a AAA+ helicase and plays a key role in enterovirus replication. Drug repurposing screens identified 2C-targeting compounds such as fluoxetine and dibucaine, but how they inhibit 2C is unknown. Here, we present a crystal structure of the soluble and monomeric fragment of coxsackievirus B3 2C protein in complex with (S)-fluoxetine (SFX), revealing an allosteric binding site. To study the functional consequences of SFX binding, we engineered an adenosine triphosphatase (ATPase)­competent, hexameric 2C protein. Using this system, we show that SFX, dibucaine, HBB [2-(α-hydroxybenzyl)-benzimidazole], and guanidine hydrochloride inhibit 2C ATPase activity. Moreover, cryo­electron microscopy analysis demonstrated that SFX and dibucaine lock 2C in a defined hexameric state, rationalizing their mode of inhibition. Collectively, these results provide important insights into 2C inhibition and a robust engineering strategy for structural, functional, and drug-screening analysis of 2C proteins.

4.
Front Cell Dev Biol ; 9: 772254, 2021.
Article in English | MEDLINE | ID: mdl-34869370

ABSTRACT

Classical in vitro fertilization (IVF) is still poorly successful in horses. This lack of success is thought to be due primarily to inadequate capacitation of stallion spermatozoa under in vitro conditions. In species in which IVF is successful, bicarbonate, calcium, and albumin are considered the key components that enable a gradual reorganization of the sperm plasma membrane that allows the spermatozoa to undergo an acrosome reaction and fertilize the oocyte. The aim of this work was to comprehensively examine contributors to stallion sperm capacitation by investigating bicarbonate-induced membrane remodelling steps, and elucidating the contribution of cAMP signalling to these events. In the presence of capacitating media containing bicarbonate, a significant increase in plasma membrane fluidity was readily detected using merocyanine 540 staining in the majority of viable spermatozoa within 15 min of bicarbonate exposure. Specific inhibition of soluble adenylyl cyclase (sAC) in the presence of bicarbonate by LRE1 significantly reduced the number of viable sperm with high membrane fluidity. This suggests a vital role for sAC-mediated cAMP production in the regulation of membrane fluidity. Cryo-electron tomography of viable cells with high membrane fluidity revealed a range of membrane remodelling intermediates, including destabilized membranes and zones with close apposition of the plasma membrane and the outer acrosomal membrane. However, lipidomic analysis of equivalent viable spermatozoa with high membrane fluidity demonstrated that this phenomenon was neither accompanied by a gross change in the phospholipid composition of stallion sperm membranes nor detectable sterol efflux (p > 0.05). After an early increase in membrane fluidity, a significant and cAMP-dependent increase in viable sperm with phosphatidylserine (PS), but not phosphatidylethanolamine (PE) exposure was noted. While the events observed partly resemble findings from the in vitro capacitation of sperm from other mammalian species, the lack of cholesterol removal appears to be an equine-specific phenomenon. This research will assist in the development of a defined medium for the capacitation of stallion sperm and will facilitate progress toward a functional IVF protocol for horse gametes.

5.
Front Cell Dev Biol ; 9: 765673, 2021.
Article in English | MEDLINE | ID: mdl-34957098

ABSTRACT

To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission-fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.

6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34737233

ABSTRACT

Mitochondria-cytoskeleton interactions modulate cellular physiology by regulating mitochondrial transport, positioning, and immobilization. However, there is very little structural information defining mitochondria-cytoskeleton interfaces in any cell type. Here, we use cryofocused ion beam milling-enabled cryoelectron tomography to image mammalian sperm, where mitochondria wrap around the flagellar cytoskeleton. We find that mitochondria are tethered to their neighbors through intermitochondrial linkers and are anchored to the cytoskeleton through ordered arrays on the outer mitochondrial membrane. We use subtomogram averaging to resolve in-cell structures of these arrays from three mammalian species, revealing they are conserved across species despite variations in mitochondrial dimensions and cristae organization. We find that the arrays consist of boat-shaped particles anchored on a network of membrane pores whose arrangement and dimensions are consistent with voltage-dependent anion channels. Proteomics and in-cell cross-linking mass spectrometry suggest that the conserved arrays are composed of glycerol kinase-like proteins. Ordered supramolecular assemblies may serve to stabilize similar contact sites in other cell types in which mitochondria need to be immobilized in specific subcellular environments, such as in muscles and neurons.


Subject(s)
Cytoskeleton/ultrastructure , Mitochondria/ultrastructure , Spermatozoa/ultrastructure , Animals , Cryoelectron Microscopy , Electron Microscope Tomography , Horses , Male , Mice , Swine
7.
Nat Commun ; 12(1): 3808, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155206

ABSTRACT

Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail - the centriole - but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC's right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.


Subject(s)
Sperm Motility/physiology , Animals , Centrioles/physiology , Centrioles/ultrastructure , Humans , Male , Mammals , Microtubules/physiology , Microtubules/ultrastructure , Sperm Head/physiology , Sperm Tail/physiology , Sperm Tail/ultrastructure
8.
EMBO J ; 40(7): e107410, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33694216

ABSTRACT

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Subject(s)
Sperm Tail/ultrastructure , Animals , Axoneme/ultrastructure , Cell Movement , Centrioles/ultrastructure , Cilia/physiology , Cryoelectron Microscopy , Electron Microscope Tomography , Horses , Male , Mice , Mice, Inbred C57BL , Sperm Tail/physiology , Swine
9.
J Neurochem ; 158(6): 1236-1243, 2021 09.
Article in English | MEDLINE | ID: mdl-33222205

ABSTRACT

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo-electron microscopy (cryo-EM) single-particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo-EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane-anchored ChE oligomers directly in their native environment-the cell.


Subject(s)
Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cryoelectron Microscopy/methods , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterases/chemistry , Cholinesterases/metabolism , Forecasting , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
10.
Open Biol ; 10(9): 200186, 2020 09.
Article in English | MEDLINE | ID: mdl-32931719

ABSTRACT

Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.


Subject(s)
Cell Biology/trends , Cytological Techniques , Germ Cells/ultrastructure , Microscopy, Electron/trends , Animals , Cryoelectron Microscopy/methods , Cryoelectron Microscopy/trends , Fertilization/physiology , Germ Cells/physiology , Humans , Mammals , Microscopy, Electron/methods
11.
Chem Biol Interact ; 319: 109007, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32087110

ABSTRACT

Acetylcholinesterase (AChE) terminates cholinergic neurotransmission by hydrolyzing acetylcholine. The collagen-tailed AChE tetramer is a product of 2 genes, ACHE and ColQ. The AChE tetramer consists of 4 identical AChE subunits and one polyproline-rich peptide, whose function is to hold the 4 AChE subunits together. Our goal was to determine the amino acid sequence of the polyproline-rich peptide(s) in Torpedo californica AChE (TcAChE) tetramers to aid in the analysis of images that will be acquired by cryo-EM. Collagen-tailed AChE was solubilized from Torpedo californica electric organ, converted to 300 kDa tetramers by digestion with trypsin, and purified by affinity chromatography. Polyproline-rich peptides were released by denaturing the TcAChE tetramers in a boiling water bath, and reducing disulfide bonds with dithiothreitol. Carbamidomethylated peptides were separated from TcAChE protein on a spin filter before they were analyzed by liquid chromatography tandem mass spectrometry on a high resolution Orbitrap Fusion Lumos mass spectrometer. Of the 64 identified collagen-tail (ColQ) peptides, 60 were from the polyproline-rich region near the N-terminus of ColQ. The most abundant proline-rich peptides were SVNKCCLLTPPPPPMFPPPFFTETNILQE, at 40% of total mass-spectral signal intensity, and SVNKCCLLTPPPPPMFPPPFFTETNILQEVDLNNLPLEIKPTEPSCK, at 27% of total intensity. The high abundance of these 2 peptides makes them candidates for the principal form of the polyproline-rich peptide in the trypsin-treated TcAChE tetramers.


Subject(s)
Acetylcholinesterase/metabolism , Peptides/metabolism , Torpedo/metabolism , Amino Acid Sequence , Animals , Collagen/metabolism
12.
Proc Natl Acad Sci U S A ; 115(52): 13270-13275, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30538207

ABSTRACT

The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.


Subject(s)
Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cryoelectron Microscopy/methods , Protein Conformation , Protein Multimerization , Crystallography, X-Ray , Humans
13.
Science ; 362(6416): 829-834, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30442809

ABSTRACT

Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From Escherichia coli outer membranes, we identified a chaperone-porin association and lipid interactions in the ß-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F1FO adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from Bos taurus yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.


Subject(s)
Adenine Nucleotide Translocator 1/metabolism , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Molecular Chaperones/metabolism , SEC Translocation Channels/metabolism , Adenine Nucleotide Translocator 1/chemistry , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Cattle , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Mass Spectrometry , Membrane Proteins/chemistry , Mitochondrial Membranes/chemistry , Mitochondrial Proton-Translocating ATPases/chemistry , Molecular Chaperones/chemistry , Porins/chemistry , Porins/metabolism , Protein Conformation, beta-Strand , Proteome/chemistry , Proteome/metabolism , SEC Translocation Channels/chemistry
14.
J Struct Biol ; 202(2): 150-160, 2018 05.
Article in English | MEDLINE | ID: mdl-29289599

ABSTRACT

Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Macromolecular Substances/chemistry , Software , Algorithms
15.
Bioinformatics ; 33(14): i13-i22, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28881965

ABSTRACT

MOTIVATION: Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. RESULTS: To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. AVAILABILITY AND IMPLEMENTATION: Source code freely available at http://www.cs.cmu.edu/∼mxu1/software . CONTACT: mxu1@cs.cmu.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Electron Microscope Tomography/methods , Machine Learning , Molecular Structure , Cluster Analysis , Image Processing, Computer-Assisted/methods
16.
Proc Natl Acad Sci U S A ; 113(15): 4176-81, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035968

ABSTRACT

Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry.


Subject(s)
Herpesvirus 1, Human/chemistry , Membrane Glycoproteins/chemistry , Viral Envelope Proteins/chemistry , Cryoelectron Microscopy , Protein Conformation
17.
Cell Rep ; 13(12): 2645-52, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26711332

ABSTRACT

Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.


Subject(s)
Active Transport, Cell Nucleus , Herpesviridae/chemistry , Nuclear Envelope/chemistry , Nuclear Proteins/chemistry , Viral Proteins/chemistry , Crystallography, X-Ray , Herpesviridae/metabolism , Models, Molecular , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Protein Conformation , Protein Folding , Structure-Activity Relationship , Viral Proteins/metabolism , Zinc Fingers
18.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687357

ABSTRACT

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Subject(s)
Active Transport, Cell Nucleus , Capsid/metabolism , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Transport Vesicles/ultrastructure , Animals , Capsid/ultrastructure , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Suid/metabolism , Nuclear Envelope/chemistry , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Pyrimidine Dimers , Scattering, Small Angle , Transport Vesicles/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism
19.
Structure ; 22(11): 1687-92, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25438672

ABSTRACT

Membrane protein-enriched extracellular vesicles (MPEEVs) provide a platform for studying intact membrane proteins natively anchored with the correct topology in genuine biological membranes. This approach circumvents the need to conduct tedious detergent screens for solubilization, purification, and reconstitution required in classical membrane protein studies. We have applied this method to three integral type I membrane proteins, namely the Caenorhabditis elegans cell-cell fusion proteins AFF-1 and EFF-1 and the glycoprotein B (gB) from Herpes simplex virus type 1 (HSV1). Electron cryotomography followed by subvolume averaging allowed the 3D reconstruction of EFF-1 and HSV1 gB in the membrane as well as an analysis of the spatial distribution and interprotein interactions on the membrane. MPEEVs have many applications beyond structural/functional investigations, such as facilitating the raising of antibodies, for protein-protein interaction assays or for diagnostics use, as biomarkers, and possibly therapeutics.


Subject(s)
Caenorhabditis elegans/metabolism , Cryoelectron Microscopy/methods , Membrane Proteins/chemistry , Simplexvirus/metabolism , Animals , Caenorhabditis elegans Proteins/chemistry , Cell Line , Mass Spectrometry , Membrane Glycoproteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Transfection , Viral Envelope Proteins/chemistry
20.
Nat Commun ; 5: 3912, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24867324

ABSTRACT

Fusogens are membrane proteins that remodel lipid bilayers to facilitate membrane merging. Although several fusogen ectodomain structures have been solved, structural information on full-length, natively membrane-anchored fusogens is scarce. Here we present the electron cryo microscopy three-dimensional reconstruction of the Caenorhabditis elegans epithelial fusion failure 1 (EFF-1) protein natively anchored in cell-derived membrane vesicles. This reveals a membrane protruding, asymmetric, elongated monomer. Flexible fitting of a protomer of the EFF-1 crystal structure, which is homologous to viral class-II fusion proteins, shows that EFF-1 has a hairpin monomeric conformation before fusion. These structural insights, when combined with our observations of membrane-merging intermediates between vesicles, enable us to propose a model for EFF-1 mediated fusion. This process, involving identical proteins on both membranes to be fused, follows a mechanism that shares features of SNARE-mediated fusion while using the structural building blocks of the unilaterally acting class-II viral fusion proteins.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Membrane Glycoproteins/metabolism , Animals , Cell Fusion , Cell Line , Cricetinae , Mass Spectrometry , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL