Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2274797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37975322

ABSTRACT

Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.


Subject(s)
Chlorine , Fluorine , Humans , Epoxide Hydrolases , Urea/pharmacology , Urea/chemistry , Molecular Dynamics Simulation
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895970

ABSTRACT

Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.

3.
Molecules ; 27(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684482

ABSTRACT

The application of non-planar scaffolds in drug design allows for the enlargement of the chemical space, and for the construction of molecules that have more effective target-ligand interactions or are less prone to the development of resistance. Among the works of the last decade, a literature search revealed spirothiazamenthane, which has served as a lead in the development of derivatives active against resistant viral strains. In this work, we studied the novel molecular scaffold, which resembles spirothiazamenthane, but combines isoxazoline as a heterocycle and cyclooctane ring as a hydrophobic part of the structure. The synthesis of new 3-nitro- and 3-aminoisoxazolines containing spiro-fused or 1,2-annelated cyclooctane fragments was achieved by employing 1,3-dipolar cycloaddition of 3-nitro-4,5-dihydroisoxazol-4-ol 2-oxide or tetranitromethane-derived alkyl nitronates with non-activated alkenes. A series of spiro-sulfonamides was obtained by the reaction of 3-aminoisoxazoline containing a spiro-fused cyclooctane residue with sulfonyl chlorides. Preliminary screening of the compounds for antiviral, antibacterial, antifungal and antiproliferative properties in vitro revealed 1-oxa-2-azaspiro[4.7]dodec-2-en-3-amine and 3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-amine with activity against the influenza A/Puerto Rico/8/34 (H1N1) virus in the submicromolar range, and high values of selectivity index. Further study of the mechanism of the antiviral action of these compounds, and the synthesis of their analogues, is likely to identify new agents against resistant viral strains.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Amines/therapeutic use , Antiviral Agents/chemistry , Cyclooctanes , Humans , Influenza, Human/drug therapy , Structure-Activity Relationship
4.
Arch Pharm (Weinheim) ; 355(5): e2100425, 2022 May.
Article in English | MEDLINE | ID: mdl-35103336

ABSTRACT

A series of novel antimitotic agents was designed using the replacement of heterocyclic cores in two tubulin-targeting lead molecules with the acylated 4-aminoisoxazole moiety. Target compounds were synthesized via heterocyclization of ß-aryl-substituted vinylketones by tert-butyl nitrite in the presence of water as a key step. 4-Methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1aa) was found to stimulate partial depolymerization of microtubules of human lung carcinoma A549 cells at a high concentration of 100 µM and to totally inhibit cell growth (IC50 = 0.99 µM) and cell viability (IC50 = 0.271 µM) in the nanomolar to submicromolar concentration range. These data provide evidence of the multitarget profile of the cytotoxic action of compound 1aa. The SAR study demonstrated that the 3,4,5-trimethoxyphenyl residue is the key structural parameter determining the efficiency both towards tubulin and other molecular targets. The cytotoxicity of 3-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1ab) to the androgen-sensitive human prostate adenocarcinoma cancer cell line LNCaP (IC50 = 0.301 µM) was approximately one order of magnitude higher than that to the conditionally normal cells lines WI-26 VA4 (IC50 = 2.26 µM) and human umbilical vein endothelial cells (IC50 = 5.58 µM) and significantly higher than that to primary fibroblasts (IC50 > 75 µM).


Subject(s)
Antimitotic Agents , Antineoplastic Agents , Neoplasms , Antimitotic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation , Endothelial Cells/metabolism , Humans , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/pharmacology
5.
Bioorg Chem ; 87: 629-637, 2019 06.
Article in English | MEDLINE | ID: mdl-30947098

ABSTRACT

Infections caused by flaviviruses pose a huge threat for public health all over the world. The search for therapeutically relevant compounds targeting tick-borne flaviviruses requires the exploration of novel chemotypes. In the present work a large series of novel polyfunctionalized isoxazole derivatives bearing substituents with various steric and electronic effects was obtained by our unique versatile synthetic procedure and their antiviral activity against tick-borne encephalitis, Omsk hemorrhagic fever, and Powassan viruses was studied in vitro. The majority of studied isoxazoles showed activity in low micromolar range. No appreciable cytotoxicity was observed for tested compounds. The lead compounds, 5-aminoisoxazole derivatives containing adamantyl moiety, exhibited strong antiviral activity and excellent therapeutic index.


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Encephalitis Viruses, Tick-Borne/drug effects , Isoxazoles/pharmacology , Adamantane/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Dose-Response Relationship, Drug , Encephalitis Viruses, Tick-Borne/growth & development , Encephalitis Viruses, Tick-Borne/isolation & purification , Humans , Isoxazoles/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Swine
6.
Mol Divers ; 21(3): 547-564, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28484934

ABSTRACT

Tubuloclustin [N-(7-adamant-2-yloxy-7-oxoheptanoyl)-N-deacetylcolchicine], a highly cytotoxic anti-tubulin compound is known for its ability to promote microtubule disassembly followed by the formation of tubulin clusters of unique morphology. Three series of antimitotic agents related to tubuloclustin were designed and synthesized in order to enhance the molecular diversity of "tubuloclustin-like" family of compounds. The series of compounds with modified adamantane moiety was highly potent in cytotoxic effect on human lung carcinoma A549 cells (EC50 = 6-400 nM) and was active in affecting the microtubule arrays and induction of strong tubulin clusterization. In two other sets of compounds, the colchicine moiety of tubuloclustin was replaced by podophyllotoxin or combretastatin A-4. All combretastatin A-4 derivatives displayed noticeable cytotoxic activity ([Formula: see text]) but their effect on microtubules depended on the position of the linker attachment. Podophyllotoxin derivatives were also toxic to A549 cells ([Formula: see text]) and caused both microtubule depolymerization and some tubulin clustering. The data obtained gave additional evidence that the whole panel of C7-colchicine, podophyllotoxin and combretastatin derivatives could manifest clustering effect, and the strength of this effect correlated with cytotoxic activity of the compounds.


Subject(s)
Adamantane/analogs & derivatives , Antimitotic Agents/chemical synthesis , Colchicine/analogs & derivatives , Tubulin/metabolism , A549 Cells , Adamantane/chemistry , Antimitotic Agents/chemistry , Antimitotic Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colchicine/chemistry , Humans , Models, Molecular , Molecular Structure , Tubulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...