Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 81(11): 113706, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21133477

ABSTRACT

A new in situ cell to study phase transitions and chemical processes on individual aerosol particles in the x-ray transmission microscope at the PolLux beamline of the Swiss light source has been built. The cell is machined from stainless steel and aluminum components and is designed to be used in the standard mount of the microscope without need of complicated rearrangements of the microscope. The cell consists of two parts, a back part which contains connections for the gas supply, heating, cooling devices, and temperature measurement. The second part is a removable clip, which hosts the sample. This clip can be easily exchanged and brought into a sampling unit for aerosol particles. Currently, the cell can be operated at temperatures ranging from -40 to +50 °C. The function of the cell is demonstrated using two systems of submicron size: inorganic sodium bromide aerosols and soot originating from a diesel passenger car. For the sodium bromide we demonstrate how phase transitions can be studied in these systems and that O1s spectra from aqueous sodium bromide solution can be taken from submicron sized particles. For the case of soot, we demonstrate that the uptake of water onto individual soot particles can be studied.

2.
Environ Sci Technol ; 43(14): 5339-44, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19708363

ABSTRACT

Diesel and wood combustion are major sources of carbonaceous particles in the atmosphere. It is very hard to distinguish between the two sources by looking at soot particle morphology, but clear differences in the chemical structure of single particles are revealed by C(1s) NEXAFS (near edge X-ray absorption fine structure) microspectroscopy. Soot from diesel combustion has a dominant spectral signature at approximately 285 eV from aromatic pi-bonds, whereas soot from wood combustion has the strongest signature at approximately 287 eV from phenolic carbon bonds. To investigate if it is possible to use these signatures for source apportionment purposes, we collected atmospheric samples with either diesel or wood combustion as a dominant particle source. No spectra obtained from the atmospheric particles completely matched the emission spectra. Especially particles from the wood dominated location underwent large modifications; the phenolic spectral signature at approximately 287 eV is greatly suppressed and surpassed by the peak attributed to the aromatic carbon groups at approximately 285 eV. Comparison with spectra from diesel soot samples experimentally aged with ozone show that very fast modification of the carbon structure of soot particles occurs as soon as they enter the atmosphere. Source attribution of single soot particles with microspectroscopy is thus hardly possible, but NEXAFS remains a powerful tool to study aging effects.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Gasoline , Particulate Matter/chemistry , Smoke , Soot/chemistry , Carbon/chemistry , Environmental Monitoring , Humans , Particle Size , Wood , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...