Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Microbiol Infect ; 29(7): 876-886, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37088423

ABSTRACT

SCOPE: Since the onset of COVID-19, several assays have been deployed for the diagnosis of SARS-CoV-2. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first set of guidelines on SARS-CoV-2 in vitro diagnosis in February 2022. Because the COVID-19 landscape is rapidly evolving, the relevant ESCMID guidelines panel releases an update of the previously published recommendations on diagnostic testing for SARS-CoV-2. This update aims to delineate the best diagnostic approach for SARS-CoV-2 in different populations based on current evidence. METHODS: An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. The panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the population, intervention, comparison, and outcome (PICO) format was developed at the beginning of the process. For each PICO, 2 panel members performed a literature search focusing on systematic reviews with a third panellist involved in case of inconsistent results. The panel reassessed the PICOs previously defined as priority in the first set of guidelines and decided to address 49 PICO questions, because 6 of them were discarded as outdated/non-clinically relevant. The 'Grading of Recommendations Assessment, Development and Evaluation (GRADE)-adoption, adaptation, and de novo development of recommendations (ADOLOPMENT)' evidence-to-decision framework was used to produce the guidelines. QUESTIONS ADDRESSED BY THE GUIDELINES AND RECOMMENDATIONS: After literature search, we updated 16 PICO questions; these PICOs address the use of antigen-based assays among symptomatic and asymptomatic patients with different ages, COVID-19 severity status or risk for severe COVID-19, time since the onset of symptoms/contact with an infectious case, and finally, types of biomaterials used.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , SARS-CoV-2 , Diagnostic Techniques and Procedures , COVID-19 Testing
2.
Biomedicines ; 9(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34356842

ABSTRACT

Social interaction is essential for life but is impaired in many psychiatric disorders. We presently focus on rats with a truncated allele for dopamine transporter (DAT). Since heterozygous individuals possess only one non-mutant allele, epigenetic interactions may unmask latent genetic predispositions. Homogeneous "maternal" heterozygous offspring (termed MAT-HET) were born from dopamine-transporter knocked-out (DAT-KO) male rats and wild-type (WT) mothers; "mixed" heterozygous offspring (termed MIX-HET) were born from both DAT-heterozygous parents. Their social behavior was assessed by: partner-preference (PPT), social-preference (SPT) and elicited-preference (EPT) tests. During the PPT, focal MIX-HET and MAT-HET males had a choice between two WT females, one in estrous and the other not. In the SPT, they met as stimulus either a MIX-HET or a WT male. In the EPT, the preference of focal male WT rats towards either a MIX- or a MAT-HET stimulus was tested. MIX-HET focal males showed an abnormal behavior, seeming not interested in socializing either with a female in estrous or with another male if MIX-HET. Focal MAT-HET males, instead, were very attracted by the female in estrous, but totally ignored the MIX-HET male. We assessed the expression of noradrenaline transporter (NET) in prefrontal cortex, hippocampus and hypothalamus, finding differences between the two offspring. MIX-HETs' hypothalamus and hippocampus showed less NET than MAT-HETs, while the latter, in turn, showed higher NET than WTs. These behavioral differences between heterozygous groups may be attributed to different maternal cares received. Results allow preclinical understanding of epigenetic factors involved in social-behavior abnormalities, typical of many psychiatric disorders.

3.
Genes Brain Behav ; 20(4): e12709, 2021 04.
Article in English | MEDLINE | ID: mdl-33070435

ABSTRACT

Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they were gently confined in one room where they experienced the fright; finally, they could freely move again. As expected, after the fearful stimulus only MAT-HET rats showed a different behavior consisting of avoidance towards the fear-associated chamber, compared to WT rats. Furthermore, ex-vivo immuno-fluorescence reveals higher prefrontal DAT levels in MAT-HET compared to MIX-HET and WT rats. Immuno-fluorescence shows also a different histone deacetylase (HDAC) enzymes concentration. Since HDAC concentration could modulate gene expression, within MAT-HET fore brain, the enhanced expression of DAT could well impair the corticostriatal-thalamic circuit, thus causing aberrant avoidance behavior (observed only in MAT-HET rats). DAT expression seems to be linked to a simply different breeding condition, which points to a reduced care by HET dams for epigenetic regulation. This could imply significant prefronto-cortical influences onto the emotional processes: hence an excessively frightful response, even to mild stressful agents, may draw developmental trajectories toward anxious and depressed-like behavior.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Avoidance Learning/physiology , Behavior, Animal/physiology , Dopamine Plasma Membrane Transport Proteins/genetics , Fear , Animals , Disease Models, Animal , Emotions/physiology , Epigenesis, Genetic/genetics , Fear/physiology , Rats
4.
Behav Brain Res ; 359: 516-527, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30472113

ABSTRACT

Dopamine (DA) is a key neurotransmitter of the central nervous system, whose availability is regulated by the dopamine transporter (DAT). Deletion of DAT gene leading to hyperdopaminergia was previously performed on mouse models. This enabled recapitulation of the core symptoms of Attention-Deficit / Hyper-activity Disorder (ADHD), which include hyperactivity, inattention and cognitive impairment. We used recently developed DAT knockout (DAT-KO) rats to carry out further behavioral profiling on this novel model of hyperdopaminergia. DAT-KO rats display elevated locomotor activity and restless environmental exploration, associated with a transient anxiety profile. Furthermore, these rats show pronounced stereotypy and compulsive-like behavior at the Marble-Burying test. Homozygous DAT-KO rats mantain intact social interaction when tested in a social-preference task, while heterozygous (HET) rats show high inactivity associated with close proximity to the social stimulus. Ex-vivo evaluation of brain catecholamines highlighted increased levels of norepinephrine in the hippocampus and hypothalamus exclusively of heterozygous rats. Taken together, our data present evidence of unexpected asocial tendencies in heterozygous (DAT-HET) rats associated with neurochemical alterations in norepinephrine neurotransmission. We shed light on the behavioral and neurochemical consequences of altered DAT function in a higher, more complex model of hyperdopaminergia. Unraveling the role of DA neurotransmission in DAT-KO rats has very important implications in the understanding of many psychiatric illnesses, including ADHD, where alterations in DA system have been demonstrated.


Subject(s)
Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/deficiency , Norepinephrine/metabolism , Social Behavior , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/psychology , Compulsive Behavior/metabolism , Conditioning, Psychological/physiology , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Exploratory Behavior/physiology , Fear/physiology , Grooming/physiology , Heterozygote , Homozygote , Motor Activity/physiology , Phenotype , Rats, Transgenic , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL