Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 489: 117014, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914165

ABSTRACT

The OECD has approved two similar methods for testing the phototoxic potency of chemicals. The first method, OECD 432, is based on the cytotoxicity properties of materials to the mouse 3T3 (clone A31) cell line (fibroblasts) after exposure to light. The second method, OECD 498, is based on the same properties but using reconstructed human epidermis - EpiDerm (stratified keratinocytes). The aim of this study was to compare these two methods using statistical tests (specificity, sensitivity, negative predictive value, positive predictive value and accuracy) and non-statistical characteristics (e.g. price and experimental duration, amount of material, level of complications, cell type, irradiation dose). Both tests were performed according to the relevant guidelines using the same 11 control substances. Higher performance values were observed for OECD 432 in both phototoxic and non-phototoxic classifications. The accuracy of OECD 432 was 90.9%, while that of OECD 498 was 72.7%. OECD 432 was also shorter and less expensive. On the other hand, OECD 498 was less complicated, and used human cells with stratum corneum, which better reflects real skin. This method can also be used with oily substances that are poorly soluble in water. However, both methods are important for testing the phototoxic properties of materials, and can be used alone or in a tiered strategy.

2.
J Appl Genet ; 65(1): 13-30, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37962803

ABSTRACT

Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.


Subject(s)
Histones , Hordeum , Hydroxamic Acids , Histones/genetics , Histones/metabolism , Hordeum/genetics , Acetylation , Plant Breeding , Indoleacetic Acids/pharmacology , Regeneration/genetics , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...