Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Pharm Res ; 40(12): 2817-2845, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37052841

ABSTRACT

PURPOSE: To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS: Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS: All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION: Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.


Subject(s)
Polysorbates , Surface-Active Agents , Drug Liberation , Surface-Active Agents/chemistry , Solubility , Ritonavir/chemistry , Povidone , Polymers/chemistry , Drug Compounding/methods , Water/chemistry
2.
J Pharm Sci ; 112(8): 2057-2068, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36574837

ABSTRACT

Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.


Subject(s)
Cyclopropanes , Polymers , Animals , Dogs , Solubility , Drug Compounding/methods , Polymers/chemistry , Solvents , Drug Liberation
3.
J Pharm Sci ; 112(1): 304-317, 2023 01.
Article in English | MEDLINE | ID: mdl-36306863

ABSTRACT

Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.


Subject(s)
Polymers , Pyrrolidines , Polymers/chemistry , Solubility , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Drug Liberation , Ritonavir/chemistry , Povidone/chemistry
4.
Mol Pharm ; 19(2): 392-413, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34494842

ABSTRACT

Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.


Subject(s)
Polymers , Drug Liberation , Drug Stability , Lumefantrine , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Solubility
5.
Pharmaceutics ; 13(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34371765

ABSTRACT

In a spray drying operation, a two-fluid nozzle (2FN) with a single channel is commonly used for atomizing the feed solution. However, the less commonly used three-fluid nozzle (3FN) has two separate channels, which allow spray drying of materials in two incompatible solution systems. Although amorphous solid dispersions (ASDs) prepared using a 3FN have been reported to deliver comparable drug dissolution performance relative to those prepared using a 2FN, few studies have systematically examined the effect of 3FN on the physical stability. Therefore, the goal of this work is to systematically study the physical stability of ASDs that are spray-dried using a 3FN compared to those prepared using the traditional 2FN. For the 2FN, a single solution of naproxen and polyvinylpyrrolidone (PVP) was prepared in a mixture of acetone and water at a 1:1 volume ratio because 2FN allows for only one solution inlet. For the 3FN, naproxen and PVP were dissolved individually in acetone and water, respectively, because 3FN allows simultaneous entry of two solutions. Upon storage of the formulated ASDs at different humidity levels (25%, 55% and 75% RH), naproxen crystallized more quickly from the 3FN ASDs as compared with the 2FN ASDs. 3FN ASDs crystallized after 5 days of storage at all conditions, whereas 2FN ASDs did not crystallize even at 55% RH for two months. This relatively higher crystallization tendency of 3FN ASDs was attributed to the inhomogeneity of drug and polymers as identified by the solid-state Nuclear Magnetic Resonance findings, specifically due to poor mixing of water- and acetone-based solutions at the 3FN nozzle. When only acetone was used as a solvent to prepare drug-polymer solutions for 3FN, the formulated ASD was found to be stable for >3 months of storage (at 75% RH), which suggests that instability of the 3FN ASD was due to the insufficient mixing of water and acetone solutions. This study provides insights into the effects of solvent and nozzle choices on the physical stability of spray-dried ASDs.

6.
Mol Pharm ; 18(9): 3496-3508, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34319746

ABSTRACT

For poorly soluble drugs formulated as amorphous solid dispersions (ASDs), fast and complete release with the generation of drug-rich colloidal particles is beneficial for optimizing drug absorption. However, this ideal dissolution profile can only be achieved when the drug releases at the same normalized rate as the polymer, also known as congruent release. This phenomenon only occurs when the drug loading (DL) is below a certain value. The maximal DL at which congruent release occurs is defined as the limit of congruency (LoC). The purpose of this study was to investigate the relationship between drug chemical structure and LoC for PVPVA-based ASDs. The compounds investigated shared a common scaffold substituted with different functional groups, capable of forming hydrogen bonds only, halogen bonds only, both hydrogen and halogen bonds, or nonspecific interactions only with the polymer. Intermolecular interactions were studied and confirmed by X-ray photoelectron spectroscopy and infrared spectroscopy. The release rates of ASDs with different DLs were investigated using surface area normalized dissolution. ASDs with hydrogen bond formation between the drug and polymer had lower LoCs, while compounds that were only able to form halogen bonds or nonspecific interactions with the polymer achieved considerably higher LoCs. This study highlights the impact of different types of drug-polymer interactions on ASD dissolution performance, providing insights into the role of drug and polymer chemical structures on the LoC and ASD performance in general.


Subject(s)
Drug Compounding/methods , Polymers/chemistry , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Chemistry, Pharmaceutical , Colloids , Drug Liberation , Excipients/chemistry
7.
J Pharm Sci ; 110(6): 2423-2431, 2021 06.
Article in English | MEDLINE | ID: mdl-33387599

ABSTRACT

This study aims to develop amorphous solid dispersion (ASD) of lumefantrine with a cost-effective approach of spray anti-solvent precipitation. Four acidic polymers, hydroxypropylmethylcellulose phthalate (HPMCP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), poly(methacrylic acid-ethyl acrylate) (EL100) and cellulose acetate phthalate (CAP) were studied as excipients at various drug-polymer ratios. Of the studied polymers, satisfactory physical stability was demonstrated for HPMCP- and HPMCAS-based ASDs with no observed powder X-ray diffraction peaks for up to 3 months of storage at 40 °C/75% RH. HPMCP and HPMCAS ASDs also achieved greater drug release levels in the dissolution study than other polymers. The HPMCP-based ASDs with a drug:polymer ratio of 2:8 exhibited a maximum drug release of 140 µg/mL for up to 2 h, which is significantly higher than the currently marketed formulation of Coartem® (<80 ng/mL). Relatively, the CAP and EL100 ASDs indicated a higher water content and crystallized within a day when stored at 40 °C/75% RH. The choice of polymer, and the drug-polymer ratio played a crucial role in the solubility enhancement of lumefantrine. Our study indicates that the developed spray anti-solvent precipitation method could be an affordable approach for producing ASDs.


Subject(s)
Methylcellulose , Crystallization , Drug Stability , Lumefantrine , Solubility , Solvents
8.
ACS Appl Mater Interfaces ; 13(4): 5312-5318, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33470091

ABSTRACT

Conjugated electrochromic polymers hold great promises for next-generation color-changing windows and displays. One of the major roadblocks in their solid-state electrochromic devices is the relatively poor cycling stability. Finding ion-storage materials as a charge-balancing component is critical in improving their electrochemical cycling stability. A key criterion for the selection of ion-storage materials is to match their electroactive voltage windows with the paired electrochromic polymers. Thus, we developed a nanostructured, amorphous vanadium oxide (VOx) ion-storage material that exhibits high transmissivity, minimal color interference, and excellent charge-balancing capability in a closely matched electroactive window with the paired electrochromic polymers. High-performance magenta-to-transmissive hybrid electrochromic devices constructed from pairing the polymer with the VOx can be reversibly switched for 50 000 cycles with an optical loss less than 5%.

9.
Mol Pharm ; 17(10): 4004-4017, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32931293

ABSTRACT

Spray drying is widely used in the manufacturing of amorphous solid dispersion (ASD) systems due to its fast drying rate, enabling kinetic trapping of the drug in amorphous form. Spray-drying conditions, such as solvent composition, can have a profound impact on the properties of spray-dried dispersions. In this study, the phase behavior of spray-dried dispersions from methanol and methanol-water mixtures was assessed using ritonavir and copovidone [poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA)] as dispersion components. The resultant ASDs were characterized using differential scanning calorimetry (DSC), fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), as well as surface-normalized dissolution rate (SNDR) measurements. Quaternary phase diagrams were calculated using a four-component Flory-Huggins model. It was found that the addition of water to the solvent system can lead to phase separation during the spray-drying process. A 10:90 H2O/MeOH solvent system caused a minor extent of phase separation. Phase heterogeneity in the 50 and 75% drug loading ASDs prepared from this spray solvent can be detected using DSC but not with other techniques used. The 25% drug loading system did not show phase heterogeneity in solid-state characterization but exhibited a compromised dissolution rate compared to that of the miscible ASD prepared from H2O-free solvent. This is possibly due to the formation of slow-releasing drug-rich phases upon phase separation. ASDs prepared with a 60:40 H2O/MeOH solvent mixture showed phase heterogeneity with all analytical methods used. The surface composition of dispersion particles as measured by fluorescence spectroscopy and XPS showed good agreement, suggesting surface drug enrichment of the spray-dried ASD particles prepared from this solvent system. Calculated phase diagrams and drying trajectories were consistent with experimental observations, suggesting that small variations in solvent composition may cause significant changes in ASD phase behavior during drying. These findings should aid in spray-drying process development for ASD manufacturing and can be applied broadly to assess the risk of phase separation for spray-drying systems using mixed organic solvents or other solvent-based processes.


Subject(s)
Chemistry, Pharmaceutical/methods , Desiccation/methods , Drug Compounding/methods , Solvents/chemistry , Administration, Oral , Drug Liberation , Solubility , Water/chemistry
10.
Int J Pharm X ; 2: 100052, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32760909

ABSTRACT

Amorphous solid dispersions (ASDs) of lumefantrine, which has low aqueous solubility, have been shown to improve bioavailability relative to crystalline formulations. Herein, the crystallization tendency and release properties of a variety of lumefantrine ASD granules, formed on a blend of microcrystalline cellulose and anhydrous lactose, prepared using a simple solvent evaporation method, were evaluated. Several polymers, a majority of which contained acidic moieties, and different drug loadings were assessed. Crystallinity as a function of time following exposure to stress storage conditions of 40 °C and 75% relative humidity was monitored for the various dispersions. Release testing was performed and ASD characteristics were further evaluated using infrared and X-ray photoelectron spectroscopy (XPS). A large difference in stability to crystallization was observed between the various ASDs, most notably depending on polymer chemistry. This could be largely rationalized based on the extent of drug-polymer interactions, specifically the degree of lumefantrine-polymer salt formation, which could be readily assessed with XPS spectroscopy. Lumefantrine release from the ASDs also varied considerably, whereby the best polymer for promoting physical stability did not lead to the highest extent of drug release. Several formulations led to concentrations above the amorphous solubility of lumefantrine, with the formation of nano-sized drug-rich aggregates. A balance between the ability of a given polymer to promote physical stability and drug release may need to be sought.

11.
Mol Pharm ; 17(8): 3062-3074, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32633973

ABSTRACT

Incomplete drug release from mesoporous silica systems has been observed in several studies. This work aims to increase the understanding of this phenomenon by investigating the mechanism of drug-silica interactions and adsorption behavior from supersaturated aqueous solutions of two similar drug molecules with different hydrogen bonding capabilities. Drug-silica interactions between indomethacin or its methyl ester and SBA-15 were investigated using spectroscopic techniques (infrared, fluorescence and X-ray photoelectron) and adsorption experiments. The results demonstrate that the predominant mechanism of interaction of both drugs with silica is hydrogen bonding between drug acceptor carbonyl groups with donor groups on the silica surface. The presence of a drug hydrogen bond donor group did not enhance drug adsorption. No evidence was obtained for drug adsorption through nonspecific hydrophobic interactions. Drug adsorption onto the silica surface was investigated under supersaturating conditions through the generation of adsorption isotherms. Similar adsorption isotherms were observed for each compound when the concentration scale was normalized to the drug amorphous solubility. In other words, the equilibrium between the drug adsorbed on the silica surface and free drug in solution was related to the drug activity in solution. The high tendency of the drug to adsorb when the solution is supersaturated was, in turn, found to limit the extent of drug release during dissolution under nonsink conditions. Thus, adsorption provides an explanation for incomplete drug release.


Subject(s)
Adsorption/physiology , Drug Liberation/physiology , Esters/metabolism , Indomethacin/metabolism , Silicon Dioxide/metabolism , Hydrophobic and Hydrophilic Interactions/drug effects , Porosity , Solubility/drug effects , Water/metabolism
12.
J Hazard Mater ; 385: 121585, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31787403

ABSTRACT

The study goal was to identify factors that influence copper (Cu), iron (Fe), lead (Pb), manganese (Mn), and zinc (Zn) loading on new and aged low-density polyethylene (LDPE) under various drinking water conditions. The applied aging procedure increased LDPE surface area, hydrophilicity and the number of oxygen containing functional groups. Aged LDPE adsorbed up to a 5 fold greater metals than the new LDPE: Cu > Pb, Zn > Mn. Water pH (5.5 to 10.5) significantly altered LDPE surface metal loading. The organic carbon leached from plastic pipes inhibited Cu adsorption (-43.8%), but other metals were less impacted (-5.7% to -9.1%). The addition of free chlorine and corrosion inhibitor retarded metal adsorption to suspended LDPE materials. Overall, by changing water conditions total metal loadings (i.e., Cu, Mn, Pb and Zn) were altered 20.1 to 35.4%. When Fe was present, Cu (-4.0%) and Pb (-4.5%) loadings were reduced, while lesser impacts were found for Mn and Zn. Cu2+, Pb2+ and Zn2+ hydroxides and oxides were identified as the major metal deposit forms on the LDPE surface by XPS. To better predict metal fate in plastic piping systems, plastic surface characteristics, dissolved organics, water pH, hydraulic conditions and microbial growth should be considered.


Subject(s)
Drinking Water/chemistry , Metals, Heavy/chemistry , Polyethylene/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
13.
Pharm Res ; 37(1): 14, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31873808

ABSTRACT

PURPOSE: The aim of this study is to determine the effects of saccharide-containing excipients on the surface composition of spray-dried protein formulations and their matrix heterogeneity. METHODS: Spray-dried formulations of myoglobin or bovine serum albumin (BSA) were prepared without excipient or with sucrose, trehalose, or dextrans. Samples were characterized by solid-state Fourier-transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and scanning electron microscopy (SEM). Protein surface coverage was determined by X-ray photoelectron spectroscopy (XPS), while conformational differences were determined by solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). RESULTS: Structural differences were exhibited with the inclusion of different excipients, with dextran formulations indicating perturbation of secondary structure. XPS indicated sucrose and trehalose reduced protein surface concentration better than dextran-containing formulations. Using ssHDX-MS, the amount of deuterium incorporation and populations present were the largest in the samples processed with dextrans. Linear correlation was found between protein surface coverage and ssHDX-MS peak area (R2 = 0.853) for all formulations with saccharide-containing excipients. CONCLUSIONS: Lower molecular weight species of saccharides tend to enrich the particle surface and reduce protein concentration at the air-liquid interface, resulting in reduced population heterogeneity and improved physical stability, as identified by ssHDX-MS.


Subject(s)
Excipients/chemistry , Myoglobin/chemistry , Serum Albumin, Bovine/chemistry , Chemistry, Pharmaceutical/methods , Desiccation/methods , Deuterium/chemistry , Dextrans/chemistry , Mass Spectrometry/methods , Sucrose/chemistry , Surface Properties , Trehalose/chemistry
14.
Mol Pharm ; 16(12): 5054-5067, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31689113

ABSTRACT

The generation of a colloidal drug-rich phase by dissolving an amorphous solid dispersion (ASD) is thought to have a positive impact on oral absorption and bioavailability. Thus, understanding which formulations generate these species is important. In this study, ledipasvir-copovidone ASDs, with and without surfactants, were prepared, and their release performance was examined at different drug loadings. An intrinsic dissolution rate assembly was used to limit potential surface area variations among formulations, and the release of both polymer and drug was monitored as a function of time. Drug-rich colloids only formed when the drug loading (DL) was at or below 5%; at a DL of 7.5% or above, drug release became negligible. The drug and polymer released congruently at and below 5% DL and incongruently at higher DLs. Thus, the limit of congruency (LoC) is between 5 and 7.5% DL. X-ray photoelectron spectroscopy (XPS) of partially dissolved tablet surfaces revealed that a drug-rich layer formed on the surface of the tablet. This was most evident for the higher DL ASDs and led to amorphous drug-controlled dissolution. Consequently, the surface drug-enriched layer physically hindered the polymer from further release. Evidence is provided that the extent of drug-polymer interactions as a function of DL plays a central role in dictating the observed release behavior. Some surfactants were found to promote the formation of drug-rich colloids at considerably higher DLs, providing a formulation strategy to increase the LoC.


Subject(s)
Benzimidazoles/chemistry , Fluorenes/chemistry , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Photoelectron Spectroscopy/methods , Polymers/chemistry , Solubility , Surface-Active Agents/chemistry , Tablets/chemistry
15.
Chemosphere ; 236: 124329, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31310967

ABSTRACT

Plastic pipes have been and are being installed downstream of metal drinking water plumbing components. Prior research has suggested that such pipe configurations may induce plastic pipe degradation and even system failure. To explore the impact of upstream metal plumbing components on downstream plastic pipes, field- and bench-scale experiments were conducted. Six month old galvanized iron pipes (GIPs) and downstream crosslinked polyethylene (PEX) pipes were exhumed from a residential home. Calcium, iron, manganese, phosphorous, and zinc were the most abundant elements on both GIPs and PEX pipes. Black and yellow deposits were found on some of the exhumed PEX pipe inner walls, which were mainly copper, iron, and manganese oxides (CuO, Cu(OH)2, Fe2O3, FeOOH and MnO2). Follow-up bench-scale experiments revealed that metal levels in the drinking water did not always predict metal loadings on plastic pipe surfaces. The pH 4 water resulted in a greater amount of metals released into the bulk water, but the pH 7.5 water resulted in a greater amount of metals deposited on the PEX pipe surfaces. Hot water (55 °C) induced a greater amount of organics released and higher metal loadings on PEX pipe surfaces at pH 7.5. ATR-FTIR analysis showed that at 55 °C, PEX pipes connected to copper and brass components had the greatest oxidation functional group peak intensity (COOC, CO, and COC). This study highlights potential downstream plastic pipe degradation and metal deposition, which may cause plumbing problems and failures for building owners, inhabitants, and water utilities.


Subject(s)
Drinking Water/chemistry , Metals/chemistry , Sanitary Engineering/methods , Corrosion , Water Supply/methods
16.
Adv Mater ; 31(30): e1902397, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31183907

ABSTRACT

The interconnect half-pitch size will reach ≈20 nm in the coming sub-5 nm technology node. Meanwhile, the TaN/Ta (barrier/liner) bilayer stack has to be >4 nm to ensure acceptable liner and diffusion barrier properties. Since TaN/Ta occupy a significant portion of the interconnect cross-section and they are much more resistive than Cu, the effective conductance of an ultrascaled interconnect will be compromised by the thick bilayer. Therefore, 2D layered materials have been explored as diffusion barrier alternatives. However, many of the proposed 2D barriers are prepared at too high temperatures to be compatible with the back-end-of-line (BEOL) technology. In addition, as important as the diffusion barrier properties, the liner properties of 2D materials must be evaluated, which has not yet been pursued. Here, a 2D layered tantalum sulfide (TaSx ) with ≈1.5 nm thickness is developed to replace the conventional TaN/Ta bilayer. The TaSx ultrathin film is industry-friendly, BEOL-compatible, and can be directly prepared on dielectrics. The results show superior barrier/liner properties of TaSx compared to the TaN/Ta bilayer. This single-stack material, serving as both a liner and a barrier, will enable continued scaling of interconnects beyond 5 nm node.

17.
J Control Release ; 298: 68-82, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30731151

ABSTRACT

Liquid-liquid phase separation (LLPS) occurs following amorphous solid dispersion (ASD) dissolution when the drug concentration exceeds the "amorphous solubility", and is emerging as an important characteristic of formulations that may enhance the oral bioavailability of poorly soluble drugs. The purpose of this research was to identify criteria that impact the rate and extent of drug release and hence the occurrence or not of LLPS upon ASD dissolution. Specifically, the effect of drug log P, phase behavior of the hydrated but undissolved ASD matrix and the relative dissolution rates of drug and polymer were studied as a function of drug loading, using nilvadipine (Nil) (ClogP = 3.04) and cilnidipine (Cil) (ClogP = 5.54) as model drugs. The model polymer was poly (vinylpyrrolidone-co-vinyl acetate) (PVPVA). Nil-PVPVA and Cil-PVPVA ASDs with different drug loadings were prepared. Surface area normalized dissolution rates of both the drug and the polymer from ASD tablets were studied. At a similar and relatively low drug loading (<20% w/w drug), dissolution of both Nil-PVPVA and Cil-PVPVA ASDs was found to switch from rapid, congruent (i.e., simultaneous) release of drug and polymer to incongruent release with slow release of drug. Only ASDs showing congruent release underwent LLPS, with the formation of amorphous drug-rich aggregates (~300nm). Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) showed the presence of characteristic "pits" on the surface of partially dissolved, incongruently releasing ASD tablets. These most likely arise due to faster polymer release in comparison to drug, whereby the drug-rich composition around these pits was confirmed by energy-dispersive X-ray (EDX) analysis and the surface drug enrichment on the compacts was confirmed by X-ray photoelectron spectroscopy (XPS). This study demonstrates two important findings, firstly, a link between congruent release of drug and polymer and the occurrence of LLPS and secondly, the switch between congruent and incongruent release of drug and polymer is a result of competitive kinetics between phase separation and the release rate of ASD components with minimal influence from drug hydrophobicity for two structural analogues.


Subject(s)
Dihydropyridines/administration & dosage , Nifedipine/analogs & derivatives , Polymers/chemistry , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Chemistry, Pharmaceutical , Dihydropyridines/chemistry , Drug Carriers/chemistry , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Nifedipine/administration & dosage , Nifedipine/chemistry , Solubility , X-Ray Microtomography
18.
Nat Mater ; 18(1): 55-61, 2019 01.
Article in English | MEDLINE | ID: mdl-30542093

ABSTRACT

Transition metal dichalcogenides have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature and polymorphism. Here, we report an electric-field-induced structural transition from a 2H semiconducting to a distorted transient structure (2Hd) and orthorhombic Td conducting phase in vertical 2H-MoTe2- and Mo1-xWxTe2-based resistive random access memory (RRAM) devices. RRAM programming voltages are tunable by the transition metal dichalcogenide thickness and show a distinctive trend of requiring lower electric fields for Mo1-xWxTe2 alloys versus MoTe2 compounds. Devices showed reproducible resistive switching within 10 ns between a high resistive state and a low resistive state. Moreover, using an Al2O3/MoTe2 stack, On/off current ratios of 106 with programming currents lower than 1 µA were achieved in a selectorless RRAM architecture. The sum of these findings demonstrates that controlled electrical state switching in two-dimensional materials is achievable and highlights the potential of transition metal dichalcogenides for memory applications.

19.
Mol Pharm ; 15(5): 2045-2053, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29641898

ABSTRACT

Surface composition critically impacts stability (e.g., crystallization) and performance (e.g., dissolution) of spray dried amorphous solid dispersion (ASD) formulations; however, traditional characterization techniques such as Raman and infrared spectroscopies may not provide useful information on surface composition on the spray dried ASD particles due to low spatial resolution, high probing depth, and lack of quantitative information. This study presents an advanced surface characterization platform consisting of two complementary techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Such a platform enables qualitative and quantitative measurements of surface composition for the fine spray dried ASD particles with ultrasurface-sensitivity (less than 10 nm from the surface) and superior spatial resolution (approximately 250 nm for ToF-SIMS). Both XPS and ToF-SIMS demonstrated that the polymer (PVPVA) was dominantly enriched on the surface of our spray dried naproxen-PVPVA ASD particles. Of a particular note was that XPS could differentiate two batches of spray dried ASD particles with a subtle difference in surface composition produced by varying feed solution solvents. This advanced surface characterization platform will provide essential surface information to understand the mechanisms underlying the impact of surface composition on stability (e.g., crystallization) and functionality (e.g., dissolution) in future studies.


Subject(s)
Naproxen/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Mass Spectrometry/methods , Photoelectron Spectroscopy/methods , Polymers/chemistry , Povidone/analogs & derivatives , Povidone/chemistry , Solubility/drug effects , Solvents/chemistry , Surface Properties
20.
Int J Pharm ; 540(1-2): 106-119, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29425762

ABSTRACT

Amorphous solid dispersions of itraconazole (ITZ) and copovidone (PVPVA 64) at 1:1 to 1:9 drug-polymer ratios were prepared using spray-drying (SD) and hot melt (HM) extrusion for comparative evaluation. Surface area normalized dissolution studies were carried out using a modified intrinsic dissolution rate (IDR) assembly and rate of release of drug as well as polymer were quantified using ultraviolet spectroscopy. The melt quenched amorphous form of ITZ provided an 18-fold dissolution advantage over the crystalline form. In general, dispersions prepared by either SD or HM showed similar dissolution profiles in terms of drug release. Both drug-controlled and polymer-controlled ITZ dissolution rates were observed, depending on the drug loading, where a switch from a drug-controlled to a polymer-controlled regime was observed when the drug loading was approximately 20% or lower. The impact of the spray drying solvent composition was studied and found to have a large effect on the drug release rate for dispersions containing a drug loading of 20%. Electron microscopy showed differences in surface morphology (scanning) and internal structure (transmission) in these dispersions as a function of solvent system. X-ray photoelectron spectroscopy (XPS) revealed differences in the surface composition of drug and polymer whereby poorly dissolving systems showed drug enrichment. This study provides insight into the complex interplay between formulation, processing and performance of amorphous solid dispersion systems.


Subject(s)
Antifungal Agents/chemistry , Drug Carriers , Hot Temperature , Itraconazole/chemistry , Pyrrolidines/chemistry , Technology, Pharmaceutical/methods , Vinyl Compounds/chemistry , Aerosols , Desiccation , Drug Compounding , Drug Liberation , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Solubility , Spectrophotometry, Ultraviolet , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...