Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 18(1): 1054-1062, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38109401

ABSTRACT

The idea of phonon bottlenecks has long been pursued in nanoscale materials for their application in hot exciton devices, such as photovoltaics. Decades ago, it was shown that there is no quantum phonon bottleneck in strongly confined quantum dots due to their physics of quantum confinement. More recently, it was proposed that there are hot phonon bottlenecks in metal halide perovskites due to their physics. Recent work has called into question these bottlenecks in metal halide perovskites. Here, we compare hot exciton cooling in a range of sizes of CsPbBr3 nanocrystals from weakly to strongly confined. These results are compared to strongly confined CdSe quantum dots of two sizes and degrees of quantum confinement. CdSe is a model system as a ruler for measuring hot exciton cooling being fast, by virtue of its efficient Auger-assisted processes. By virtue of 3 ps time resolution, the hot exciton photoluminescence can now be directly observed, which is the most direct measure of the presence of hot excitons and their lifetimes. The hot exciton photoluminescence decays on nearly the same 2 ps time scale on both the weakly confined perovskite and the larger CdSe quantum dots, much faster than the 10 ps cooling predicted by transient absorption experiments. The smaller CdSe quantum dot has still faster cooling, as expected from quantum size effects. The quantum dots of perovskites show extremely fast hot exciton cooling, decaying faster than detection limits of <1 ps, even faster than the CdSe system, suggesting the efficiency of Auger processes in these metal halide perovskite nanocrystals and especially in their quantum dot form. These results across a range of sizes of nanocrystals reveal extremely fast hot exciton cooling at high exciton density, independent of composition, but dependent upon size. Hence these metal halide perovskite nanocrystals seem to cool heavily following quantum dot physics.

2.
ACS Nano ; 17(24): 24910-24918, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38079478

ABSTRACT

Semiconductor metal halide perovskite nanocrystals have been under intense investigation for their promise in a variety of optoelectronic applications, which arises from their remarkable properties of defect tolerance and efficient light emission. Recently, quantum dot versions of perovskite nanocrystals have been available, enabling investigation of how quantum size effects control optical function and performance in these quantum dots (QD), past their well-known covalent II-VI analogues. We perform time-resolved photoluminescence (t-PL) experiments on CsPbBr3 perovskite nanocrystals spanning in diameter from 5.8 nm strongly confined quantum dots to 18 nm weakly confined quantum dots. Experiments are performed with sufficient time resolution of 3 ps to observe the interaction energies and recombination kinetics from excitons to multiexcitons. Comparing the same sized QD reveals that perovskite QD have a larger radiative rate constant for emission from X than CdSe QD due to a larger oscillator strength. The multiexciton (MX) regime reveals that perovskite QD emit brightly and with more focused bandwidth than equivalent sized CdSe QD enabling more spectrally pure brightness. The MX kinetics reveals that the perovskite QD maintain efficient radiative decay, effectively competing with Auger recombination. These experiments reveal that the strongly confined QD of perovskites can be efficient multiexcitonic emitters, such as in high brightness light emitting diodes, especially in the blue.

3.
J Phys Chem Lett ; 14(30): 6904-6911, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37498205

ABSTRACT

Most experiments on multiexcitons (MX) in quantum dots focused on the biexciton (XX), which is now well-understood. In contrast, there is little understanding of higher MX in quantum dots as a result of their difficulty to observe. Here, we apply time-resolved photoluminescence (t-PL) spectroscopy with 3 ps time resolution, sufficient to directly resolve previously unobserved spectral dynamics of a higher MX in CdSe quantum dots. These experiments resolve the controversy of the sequence of MX emissions, revealing that the higher channels sequentially populate the lower channels. There is a strong dependence of MX recombination kinetics upon a higher MX state, following a universal volume scaling law for Auger recombination for larger dots. Smaller dots show deviations for higher MX. In addition to triexcitons (3X), these experiments reveal MX up to the tetraexciton (4X). These experiments provide a direct observation of MX formation and annihilation in quantum dots. The impact of this observation is a step toward designing quantum dots to exploit higher MX processes.

SELECTION OF CITATIONS
SEARCH DETAIL