Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069413

ABSTRACT

Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors, Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to determine their regulatory roles in liquid-stored boar sperm at 17 °C. The results indicated that PDK1 and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of 2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize liquid-stored boar semen after their addition in the extender.


Subject(s)
Semen Preservation , Semen , Swine , Male , Animals , Semen/metabolism , Phenylbutyrates/pharmacology , Semen Preservation/methods , Sperm Motility , Spermatozoa/metabolism , Semen Analysis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Pyruvate Dehydrogenase Complex/metabolism
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446160

ABSTRACT

Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.


Subject(s)
Lysine , Semen Preservation , Swine , Male , Animals , Acetylation , Lysine/metabolism , Semen/metabolism , Semen Preservation/methods , Spermatozoa/metabolism , Cryopreservation/methods , Sperm Motility
3.
Theriogenology ; 204: 8-17, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37030173

ABSTRACT

In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen/physiology , Phosphatidylinositol 3-Kinases , Cryopreservation/veterinary , Spermatozoa/physiology , Fatty Acids, Unsaturated , Semen Preservation/veterinary , Sperm Motility/physiology , Mammals
4.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675176

ABSTRACT

Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs) which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation. However, the interaction between ORs and odor molecules and the molecular mechanism of ORs mediating sperm capacitation are still unclear. The present study aimed to explore the underlying interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation. The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172, Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in sperm capacitation and fertilization.


Subject(s)
Heparin , Receptors, Odorant , Sperm Capacitation , Animals , Male , Heparin/pharmacology , Heparin/metabolism , Molecular Docking Simulation , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Semen/metabolism , Sperm Capacitation/genetics , Sperm Capacitation/physiology , Spermatozoa/metabolism , Swine
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362267

ABSTRACT

Genistein (GEN), a phytoestrogen, has been reported to regulate skeletal muscle endocrine factor expression and muscle fiber type switching, but its role in skeletal muscle regeneration is poorly understood. As a class of epigenetic regulators widely involved in skeletal muscle development, microRNAs (miRNAs) have the potential to treat skeletal muscle injury. In this study, we identified miR-221 and miR-222 and their target genes MyoG and Tnnc1 as key regulators during skeletal muscle regeneration, and both were regulated by GEN. C2C12 myoblasts and C2C12 myotubes were then used to simulate the proliferation and differentiation of muscle satellite cells during skeletal muscle regeneration. The results showed that GEN could inhibit the proliferation of satellite cells and promote the differentiation of satellite cells by inhibiting the expression of miR-221/222. Subsequent in vitro and in vivo experiments showed that GEN improved skeletal muscle regeneration mainly by promoting satellite cell differentiation in the middle and late stages, by regulating miR-221/222 expression. These results suggest that miR-221/222 and their natural regulator GEN have potential applications in skeletal muscle regeneration.


Subject(s)
Genistein , MicroRNAs , Genistein/pharmacology , Muscle Development/genetics , Myoblasts/metabolism , Cell Differentiation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Cell Proliferation/genetics
6.
J Reprod Immunol ; 151: 103635, 2022 06.
Article in English | MEDLINE | ID: mdl-35525084

ABSTRACT

The reproductive system can be infected by a variety of double-stranded RNA viruses, which disrupt ovary function and pregnancy. However, whether viral infection directly affects early embryonic development remains unknown. Here we show that Poly(I:C), which mimics a double-stranded RNA virus, significantly impaired mouse early embryonic development in vitro, and up-regulated TLR3 and IFNα at the two cells embryo stage. Further studies indicated that Poly(I:C)-treatment caused DNA damage and abnormal spindle morphology at the first cleavage. Moreover, CDX2 and SOX2 expression was decreased while blastocyst cell apoptosis was increased. Altogether, Poly(I:C) decreased the rate of successful in vitro fertilization via DNA damage and abnormal spindle morphology at the first cleavage and inhibited early embryonic development by inducing immune response and promoting blastocyst cell apoptosis. This study provides an implication for exploring the causes of reproductive disorders in mammals and humans caused by infection of double-stranded RNA virus.


Subject(s)
Embryonic Development , RNA, Double-Stranded , Animals , Blastocyst , DNA Damage , Female , Fertilization in Vitro , Humans , Mammals/genetics , Mice , Pregnancy
7.
BMC Genomics ; 22(1): 588, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344298

ABSTRACT

BACKGROUND: Cryopreservation induces transcriptomic and epigenetic modifications that strongly impairs sperm quality and function, and thus decrease reproductive performance. N6-methyladenosine (m6A) RNA methylation varies in response to stress and has been implicated in multiple important biological processes, including post-transcriptional fate of mRNA, metabolism, and apoptosis. This study aimed to explore whether cryopreservation induces m6A modification of mRNAs associated with sperm energy metabolism, cryoinjuries, and freezability. RESULTS: The mRNA and protein expression of m6A modification enzymes were significantly dysregulated in sperm after cryopreservation. Furthermore, m6A peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. The mRNAs containing highly methylated m6A peaks (fts vs. fs) were significantly associated with metabolism and gene expression, while the genes with less methylated m6A peaks were primarily involved in processes regulating RNA metabolism and transcription. Furthermore, the joint analysis of DMMGs and differentially expressed genes indicated that both of these play a vital role in sperm energy metabolism and apoptosis. CONCLUSIONS: Our study is the first to reveal the dynamic m6A modification of mRNAs in boar sperm during cryopreservation. These epigenetic modifications may affect mRNA expression and are closely related to sperm motility, apoptosis, and metabolism, which will provide novel insights into understanding of the cryoinjuries or freezability of boar sperm during cryopreservation.


Subject(s)
Sperm Motility , Transcriptome , Animals , Cryopreservation , Male , RNA, Messenger/genetics , Spermatozoa , Swine
8.
J Anim Sci Biotechnol ; 12(1): 84, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34266479

ABSTRACT

BACKGROUND: This study investigated the effect of melatonin (MT) on cell cycle (G1/S/G2/M) of parthenogenetic zygotes developed from vitrified-warmed mouse metaphase II (MII) oocytes and elucidated the potential mechanism of MT action in the first cleavage of embryos. RESULTS: After vitrification and warming, oocytes were parthenogenetically activated (PA) and in vitro cultured (IVC). Then the spindle morphology and chromosome segregation in oocytes, the maternal mRNA levels of genes including Miss, Doc1r, Setd2 and Ythdf2 in activated oocytes, pronuclear formation, the S phase duration in zygotes, mitochondrial function at G1 phase, reactive oxygen species (ROS) level at S phase, DNA damage at G2 phase, early apoptosis in 2-cell embryos, cleavage and blastocyst formation rates were evaluated. The results indicated that the vitrification/warming procedures led to following perturbations 1) spindle abnormalities and chromosome misalignment, alteration of maternal mRNAs and delay in pronucleus formation, 2) decreased mitochondrial membrane potential (MMP) and lower adenosine triphosphate (ATP) levels, increased ROS production and DNA damage, G1/S and S/G2 phase transition delay, and delayed first cleavage, and 3) increased early apoptosis and lower levels of cleavage and blastocyst formation. Our results further revealed that such negative impacts of oocyte cryopreservation could be alleviated by supplementation of warming, recovery, PA and IVC media with 10- 9 mol/L MT before the embryos moved into the 2-cell stage of development. CONCLUSIONS: MT might promote cell cycle progression via regulation of MMP, ATP, ROS and maternal mRNA levels, potentially increasing the first cleavage of parthenogenetic zygotes developed from vitrified-warmed mouse oocytes and their subsequent development.

9.
Front Vet Sci ; 8: 635013, 2021.
Article in English | MEDLINE | ID: mdl-33969033

ABSTRACT

Cryopreservation induces sperm cryoinjuries, including physiological and functional changes. However, the molecular mechanisms of sperm cryoinjury and cryoresistance are still unknown. Cryoresistance or the freeze tolerance of sperm varies across species, and boar sperm is more susceptible to cold stress. Contrary to boar sperm, giant panda sperm appears to be strongly freeze-tolerant and is capable of surviving repeated cycles of freeze-thawing. In this study, differentially expressed (DE) PIWI-interacting RNAs (piRNAs) of fresh and frozen-thawed sperm with different freeze tolerance capacity from giant panda and boar were evaluated. The results showed that 1,160 (22 downregulated and 1,138 upregulated) and 384 (110 upregulated and 274 downregulated) DE piRNAs were identified in giant panda and boar sperm, respectively. Gene ontology (GO) enrichment analysis revealed that the target DE messenger RNAs (mRNAs) of DE piRNAs were mainly enriched in biological regulation, cellular, and metabolic processes in giant panda and boar sperm. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the target DE mRNAs of DE piRNAs were only distributed in DNA replication and the cyclic adenosine monophosphate (cAMP) signaling pathway in giant panda, but the cAMP, cyclic guanosine monophosphate (cGMP), and mitogen-activated protein kinase (MAPK) signaling pathways in boar sperm were considered as part of the olfactory transduction pathway. In conclusion, we speculated that the difference in the piRNA profiles and the DE piRNAs involved in the cAMP signaling pathway in boar and giant panda may have contributed to the different freeze tolerance capacities between giant panda and boar sperm, which helps to elucidate the molecular mechanism behind sperm cryoinjury and cryoresistance.

10.
Genes (Basel) ; 12(4)2021 03 27.
Article in English | MEDLINE | ID: mdl-33801624

ABSTRACT

Sperm chemotaxis, which guide sperm toward oocyte, is tightly associated with sperm capacitation, motility, and fertility. However, the molecular mechanism of sperm chemotaxis is not known. Reproductive odorant and taste receptors, belong to G-protein-coupled receptors (GPCR) super-family, cause an increase in intracellular Ca2+ concentration which is pre-requisite for sperm capacitation and acrosomal reaction, and result in sperm hyperpolarization and increase motility through activation of Ca2+-dependent Cl¯ channels. Recently, odorant receptors (ORs) in olfactory transduction pathway were thought to be associated with post-thaw sperm motility, freeze tolerance or freezability and cryo-capacitation-like change during cryopreservation. Investigation of the roles of odorant and taste receptors (TRs) is important for our understanding of the freeze tolerance or freezability mechanism and improve the motility and fertility of post-thaw sperm. Here, we reviewed the roles, mode of action, impact of odorant and taste receptors on sperm chemotaxis and post-thaw sperm quality.


Subject(s)
Cryopreservation/methods , Receptors, G-Protein-Coupled/metabolism , Spermatozoa/physiology , Animals , Chemotaxis , Humans , Male , Receptors, Odorant/metabolism , Sperm Capacitation , Sperm Motility , Spermatozoa/cytology
11.
Tissue Cell ; 71: 101518, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33676235

ABSTRACT

Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.


Subject(s)
Antigens, Differentiation/biosynthesis , Cell Proliferation , Cell Separation , Mesenchymal Stem Cells , Umbilical Cord , Ursidae/metabolism , Animals , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism
12.
Dev Comp Immunol ; 119: 103990, 2021 06.
Article in English | MEDLINE | ID: mdl-33422554

ABSTRACT

Toll-like receptors (TLRs) play an important role in innate immune through recognizes pathogens. In order to reveal the evolutionary patterns and adaptive evolution of avian TLRs, we examined 66 representative bird species in 26 orders. Phylogenetic results indicated that TLR1A and TLR1B may have differentiated functionally. Evolutionary analysis showed that the TLR genes in birds under strong Purification selection (0.165-0.4265). A total of 126 common positively selected codons were identified in 10 TLR genes of avian, and most sites were located in the extracellular leucine-rich repeat (LRR) functional domains, and both environment and feeding habits were external factors driving the evolution of avian TLR genes. Environmental pressures had a greater effect on TLR1B, TLR2B, TLR3 and TLR4, while feeding habits were active in affecting TLR2A, TLR2B, TLR15 and TLR21. Our data suggested that TLR genes have been subjected to different selective pressures in the diversification of birds and that these changes enabled them to respond differently to pathogens from diverse sources.


Subject(s)
Adaptation, Physiological/genetics , Avian Proteins/genetics , Birds/genetics , Evolution, Molecular , Gene Duplication , Toll-Like Receptors/genetics , Animals , Base Sequence , Ecosystem , Feeding Behavior , Phylogeny , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Selection, Genetic , Sequence Homology, Nucleic Acid , Toll-Like Receptor 1/chemistry , Toll-Like Receptor 1/genetics , Toll-Like Receptors/chemistry , Toll-Like Receptors/classification
13.
Front Cell Dev Biol ; 9: 792994, 2021.
Article in English | MEDLINE | ID: mdl-35155446

ABSTRACT

Cryopreservation induces capacitation-like (cryo-capacitation) changes, similar to natural capacitation, and affects the fertility potential of post-thawed sperm. The molecular mechanism of sperm cryo-capacitation during cryopreservation remains unknown. PIWI-interacting RNAs (piRNAs) have been reported to be involved in cryo-capacitation of post-thawed sperm and regulation of sperm motility, capacitation, and chemotaxis. In this study, protein tyrosine phosphatase nonreceptor type 7 (PTPN7) was positively targeted by piR-121380 after a dual luciferase assay. The mRNA expression of PTPN7 and piR-121380 was significantly decreased (p < 0.01); however, PTPN7 protein was significantly increased (p < 0.01) in post-thawed boar sperm. Furthermore, E1RK1/2 phosphorylation was reduced during cryopreservation. Six hours after transfection with piR-121380 mimic and inhibitor, the phosphorylation of ERK2 was significantly increased and decreased (p < 0.01), respectively. Furthermore, the highest and lowest total sperm motility, forward motility, and capacitation rate were observed after piR-121380 mimic and inhibitor treatments, respectively. The concentration of intracellular calcium ([Ca2+]i) showed no significant difference after transfection with either piR-121380 mimic or inhibitor at 1, 3, and 6 h. In conclusion, we demonstrated that piR-121380 modulates ERK2 phosphorylation by targeting PTPN7, which induces sperm cryo-capacitation, and eventually affects the motility and fertility potential of post-thawed sperm.

14.
Aging (Albany NY) ; 12(21): 21777-21797, 2020 11 07.
Article in English | MEDLINE | ID: mdl-33188156

ABSTRACT

Giant panda (Ailuropoda melanoleuca) is an endangered mammalian species. Exploring immune and metabolic changes that occur in giant pandas with age is important for their protection. In this study, we systematically investigated the physiological and biochemical indicators in blood, as well as the transcriptome, and methylation profiles of young, adult, and old giant pandas. The white blood cell (WBC), neutrophil (NEU) counts and hemoglobin (HGB) concentrations increased significantly with age (young to adult), and some indicators related to blood glucose and lipids also changed significantly with age. In the transcriptome analysis, differentially expressed genes (DEGs) were found in comparisons of the young and adult (257), adult and old (20), young and old (744) groups. Separation of the DEGs into eight profiles according to the expression trend using short time-series expression miner (STEM) software revealed that most DEGs were downregulated with age. Functional analysis showed that most DEGs were associated with disease and that these DEGs were also associated with the immune system and metabolism. Furthermore, gene methylation in giant pandas decreased globally with age, and the expression of CCNE1, CD79A, IL1R1, and TCF7 showed a highly negative correlation with their degree of methylation. These results indicate that the giant panda's immune function improves gradually with age (young to adult), and that changes in the methylation profile are involved in the effects of age on immune and metabolic functions. These results have important implications for the understanding and conservation of giant pandas.


Subject(s)
Aging/immunology , Aging/metabolism , Ursidae/immunology , Ursidae/metabolism , Animals , DNA Methylation/physiology , Female , Gene Expression Profiling , Male , Transcriptome/physiology
15.
Genomics ; 112(5): 3815-3825, 2020 09.
Article in English | MEDLINE | ID: mdl-32135299

ABSTRACT

Most of owls are nocturnal raptor and usually use their soft and fluffy feathers to flight silently to catch prey while other diurnal raptors prefer fierce attack and swift flight. For energy cost of these different hunting strategies can be greatly different, we speculate that mitochondrial gene of owls may undergo a different evolution pattern following raptors evolution. To test our hypothesis, we sequenced the mtDNA genome of Otus sunia and calculated the ratio of nonsynonymous to synonymous nucleotide substitutions (ω, Ka/Ks, dN/dS) of raptors. The mtDNA genome of O. sunia was 17,609 bp in length, containing 13 PCGs, 2 ribosomal RNAs, 22 transfer RNAs and a control region. Secondly structure of tRNAs and rRNAs were predicted and conserved sequence blocks (CSBs) on control region were identified. The Bayesian inference tree and maximum likelihood tree based on 13 PCGs and 2 rRNAs suggested the owls were related to other raptors. Finally, calculation of ω-values of each owls and other raptors mtDNA PCGs indicated that owls accumulated more nonsynonymous nucleotide substitutions relative to synonymous substitutions compared to other raptors. For mtDNA PCGs associated with energy metabolism, this finding may reveal the degeneration of flight abilities of owls.


Subject(s)
Birds/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Animals
16.
Cells ; 9(1)2020 01 08.
Article in English | MEDLINE | ID: mdl-31936222

ABSTRACT

miR-26a is associated with sperm metabolism and can affect sperm motility and apoptosis. However, how miR-26a affects sperm motility remains largely unknown. Our previous study indicated that the PDHX gene is predicted to be a potential target of miR-26a, which is responsible for pyruvate oxidative decarboxylation which is considered as a key step for connecting glycolysis with oxidative phosphorylation. In this study, we first reported a potential relationship between miR-26a and PDHX and their expressions in fresh, frozen-thawed, and epididymal boar sperm. Then, sperm viability and survival were determined after transfection of miR-26a. mRNA and protein expression level of PDHX in the liquid-preserved boar sperm after transfection were also determined by RT-qPCR and Western Blot (WB). Our results showed that expression level of PDHX was significantly increased during sperm transit from epididymal caput to corpus and cauda. Similarly, expression of PDHX was significantly higher (P < 0.05) in fresh sperm as compared to epididymal cauda and frozen-thawed sperm. However, the expression of miR-26a in epididymal corpus sperm was significantly higher (P < 0.05) than that of caput and cauda sperm. Furthermore, after transfection of boar sperm with miR-26a mimic and inhibitor under liquid storage, the lowest and highest sperm viability was observed in miR-26a mimic and inhibitor treatment (P < 0.05), respectively. The protein levels of PDHX, after 24 and 48 h of transfection of miR-26a mimics and inhibitor, were notably decreased and increased (P < 0.05), respectively, as compared to negative control (NC) group. In conclusion, the novel and enticing findings of our study provide a reasonable evidence that miR-26a via PDHX, a link between glycolysis and oxidative phosphorylation, could regulate the glycometabolic pathway which eventually affect boar sperm viability and survival.


Subject(s)
Gene Expression Regulation , Glycolysis , MicroRNAs/genetics , Pyruvate Dehydrogenase Complex/metabolism , Sperm Motility , Spermatozoa/cytology , Spermatozoa/metabolism , Animals , Cell Survival , Male , Pyruvate Dehydrogenase Complex/genetics , Swine
17.
Antioxidants (Basel) ; 8(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835711

ABSTRACT

Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.

18.
Cells ; 8(9)2019 08 30.
Article in English | MEDLINE | ID: mdl-31480299

ABSTRACT

The present study aimed to investigate the effect of melatonin (MT) supplementation on in vitro maturation of vitrified mouse germinal vesicle (GV) oocytes. The fresh oocytes were randomly divided into three groups: untreated (control), or vitrified by open-pulled straw method without (vitrification group) or with MT supplementation (vitrification + MT group). After warming, oocytes were cultured in vitro, then the reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, ATP levels, spindle morphology, mRNA expression of spindle assembly checkpoint (SAC)-related genes (Mps1, BubR1, Mad1, Mad2), and their subsequent developmental potential in vitro were evaluated. The results showed that vitrification/warming procedures significantly decreased the percentage of GV oocytes developed to metaphase II (MII) stage, the mitochondrial membrane potential, ATP content, and GSH levels, remarkably increased the ROS levels, and significantly impaired the spindle morphology. The expressions of SAC-related genes were also altered in vitrified oocytes. However, when 10-7 mol/L MT was administered during the whole length of the experiment, the percentage of GV oocytes matured to MII stage was significantly increased, and the other indicators were also significantly improved and almost recovered to the normal levels relative to the control. Thus, we speculate that MT might regulate the mitochondrial membrane potential, ATP content, ROS, GSH, and expression of SAC-related genes, potentially increasing the in vitro maturation of vitrified-warmed mouse GV oocytes.


Subject(s)
Cryopreservation/methods , M Phase Cell Cycle Checkpoints/drug effects , Melatonin/pharmacology , Oocytes/cytology , Animals , Female , Glutathione/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred ICR , Reactive Oxygen Species/metabolism , Vitrification
19.
Biomolecules ; 9(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31480517

ABSTRACT

Post-thawed sperm quality parameters vary across different species after cryopreservation. To date, the molecular mechanism of sperm cryoinjury, freeze-tolerance and other influential factors are largely unknown. In this study, significantly dysregulated microRNAs (miRNAs) and mRNAs in boar and giant panda sperm with different cryo-resistance capacity were evaluated. From the result of miRNA profile of fresh and frozen-thawed giant panda sperm, a total of 899 mature, novel miRNAs were identified, and 284 miRNAs were found to be significantly dysregulated (195 up-regulated and 89 down-regulated). Combined analysis of miRNA profiling of giant panda sperm and our previously published data on boar sperm, 46, 21 and 4 differentially expressed (DE) mRNAs in boar sperm were believed to be related to apoptosis, glycolysis and oxidative phosphorylation, respectively. Meanwhile, 87, 17 and 7 DE mRNAs in giant panda were associated with apoptosis, glycolysis and oxidative phosphorylation, respectively. Gene ontology (GO) analysis of the targets of DE miRNAs showed that they were mainly distributed on membrane related pathway in giant panda sperm, while cell components and cell processes were tied to the targets of DE miRNAs in boar sperm. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DE mRNAs indicated that most of these DE mRNAs were distributed in membrane signal transduction-related pathways in giant panda sperm, while those in boar sperm were mainly distributed in the cytokine-cytokine receptor interaction pathway and inflammatory related pathways. In conclusion, although the different freezing extenders and programs were used, the DE miRNAs and mRNAs involved in apoptosis, energy metabolism, olfactory transduction pathway, inflammatory response and cytokine-cytokine interactions, could be the possible molecular mechanism of sperm cryoinjury and freeze tolerance.


Subject(s)
Freezing , MicroRNAs/metabolism , RNA, Messenger/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Animals , Cryopreservation , Male , Sus scrofa , Ursidae
20.
Antioxidants (Basel) ; 8(8)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382427

ABSTRACT

Selenium (Se) is an important trace mineral having many essential roles at the cellular and organismal levels in animal and human health. The biological effects of Se are mainly carried out by selenoproteins (encoded by 25 genes in humans and 24 in mice). As an essential component of selenoproteins, Se performs structural and enzymic roles; in the latter context it is well known for its catalytic and antioxidative functions. Studies involving different animal models have added great value to our understanding regarding the potential implications of Se and selenoproteins in mammalian fertility and reproduction. In this review, we highlight the implications of selenoproteins in male fertility and reproduction followed by the characteristic biological functions of Se and selenoproteins associated with overall male reproductive function. It is evident from observations of past studies (both animal and human) that Se is essentially required for spermatogenesis and male fertility, presumably because of its vital role in modulation of antioxidant defense mechanisms and other essential biological pathways and redox sensitive transcription factors. However, bearing in mind the evidences from mainstream literature, it is also advisable to perform more studies focusing on the elucidation of additional roles played by the peculiar and canonical selenoproteins i.e., glutathione peroxidase 4 (GPX4) and selenoprotein P (SELENOP) in the male reproductive functions. Nevertheless, search for the elucidation of additional putative mechanisms potentially modulated by other biologically relevant selenoproteins should also be included in the scope of future studies. However, as for the implication of Se in fertility and reproduction in men, though a few clinical trials explore the effects of Se supplementation on male fertility, due to inconsistencies in the recruitment of subjects and heterogeneity of designs, the comparison of such studies is still complicated and less clear. Therefore, further research focused on the roles of Se and selenoproteins is awaited for validating the evidences at hand and outlining any therapeutic schemes intended for improving male fertility. As such, new dimensions could be added to the subject of male fertility and Se supplementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...