Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychiatr Dis Treat ; 16: 2753-2764, 2020.
Article in English | MEDLINE | ID: mdl-33209030

ABSTRACT

BACKGROUND: It is known that miR-532-5p is critical for neuronal differentiation. However, the role of miR-532-5p in depression remains unknown. This study aimed to investigate the role and mechanism of miR-532-5p in major depressive disorder (MDD). METHODS: The depression mice model was established by chronic unpredictable mild stress (CUMS) and confirmed by forced swimming test (FST) and sucrose preference test (SPT). The role of miR-532-5p in MDD was detected by tail suspension test (TST), FST, SPT and SIT. QRT-PCR was used to detect the expression of miR-139-5p in hippocampus and BV-2 microglia of mice. ELISA and Western blotting were used to detect the expression of the nitric oxide synthase (NOS), proinflammatory cytokines (IL-6, IL-1ß, TNF-α, and MCP-1) and transcriptional activator 3 (STAT3). Luciferase reporter assay was used to verify the downstream target genes of miR-532-5p. RESULTS: MiR-532-5p was significantly reduced in the hippocampus of mice treated with CUMS. Overexpression of miR-532-5p significantly reduced CUMS-induced depression-like behaviors and suppressed the expression of IL-6, IL-1ß, TNF-α and MCP-1. MiR-532-5p directly targeted signal transducers and STAT3 in BV2 cells. In addition, overexpression of miR-532-5p restrained the raise of inducible NOS and IL-6, IL-1 ß, TNF-α and MCP-1 in LPS-exposed BV2 cells. CONCLUSION: This study indicates that miR-532-5p plays an important role in CUMS-induced depression-like behaviors by targeting STAT3, and miR-532-5p may be a potential target for MDD therapy.

2.
Oncol Lett ; 13(3): 1131-1136, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28454224

ABSTRACT

MicroRNA (miRNA) are endogenous non-coding RNAs that suppress gene expression at the transcriptional, post-transcriptional or translational level by targeting the 3'-UTRs of specific mRNAs. miR-10a has been frequently reported to be aberrantly overexpressed in human tumors. In gastric cancer (GC), miR-10a has an important role in the metastasis from primary GC to lymph nodes. However, the role and relevant pathways of miR-10a in GC metastasis remain largely unknown. The present study was performed using 41 GC and 20 normal gastric mucosa tissues. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that MAPK8IP1 was significant downregulated in GC tissue. A statistically significant inverse correlation was detected between miR-10a and MAPK8IP1 mRNA expression levels in GC specimens. Luciferase reporter assay and qPCR results suggested that MAPK8IP1 was a direct target of miR-10a in GC cells. Matrigel invasion assay and wound-healing assay results showed that MAPK8IP1 overexpression rescued the increased migration ability of miR-10a effectors in MKN45 cells. Furthermore, the underlying mechanism of miR-10a functions in GC was explored. The findings indicated that miR-10a-5p directly targets MAPK8IP1, as a major mechanism for gastric cancer metastasis. The results of the present study suggested that miR-10a may be a potential target for the treatment of GC in the future.

3.
Tumour Biol ; 37(9): 11733-11741, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27020592

ABSTRACT

Long non-coding RNAs (lncRNAs) play a critical role in cancer progression, including in nasopharyngeal carcinoma (NPC). However, it is still poorly understood whether lncRNA regulates epithelial to mesenchymal transition (EMT) and radioresistance of NPC cells. We found that lncRNA NEAT1 was significantly upregulated in NPC cell lines and tissues. Knockdown of NEAT1 could sensitize NPC cells to radiation in vitro. Further investigation found that NEAT1 regulated radioresistance by modulating EMT phenotype. Furthermore, we found that there was reciprocal repression between NEAT1 and miR-204. ZEB1 was identified as a downstream target of miR-204 and NEAT1 upregulated ZEB1 expression by negatively regulating miR-204 expression. Taking together, we proposed that NEAT1 regulated EMT phenotype and radioresistance by modulating the miR-204/ZEB1 axis in NPC.


Subject(s)
Epithelial-Mesenchymal Transition , MicroRNAs/physiology , Nasopharyngeal Neoplasms/pathology , RNA, Long Noncoding/physiology , Radiation Tolerance , Zinc Finger E-box-Binding Homeobox 1/physiology , Adult , Aged , Carcinoma , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...