Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 72(1): 416-423, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38156892

ABSTRACT

Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.


Subject(s)
Monoterpenes , Saccharomyces cerevisiae , Acyclic Monoterpenes/metabolism , Monoterpenes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Nitric Oxide Synthase/metabolism
2.
Anal Methods ; 15(9): 1145-1156, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36787098

ABSTRACT

In this study, we prepared three different silicon quantum dots (SiQDs-1, SiQDs-2 and SiQDs-3) by hydrothermal synthesis with rose Bengal as the reducing agent and triacetoxy(methyl)silane and allyloxytrimethylsilane as silicon sources. The as-prepared SiQDs not only exhibited potent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also showed specific responses to tetracycline (TC). The minimum inhibitory concentrations (MICs) of SiQDs-1, SiQDs-2 and SiQDs-3 were 0.55 mg mL-1, 0.47 mg mL-1 and 0.39 mg mL-1 against E. coli, respectively, and 0.45 mg mL-1, 0.34 mg mL-1 and 0.34 mg mL-1 against S. aureus, respectively. By examining the morphologies of bacteria and generation of reactive oxygen species (ROS), we speculated that these SiQDs shrink the bacteria and even directly destroy the bacterial structural integrity through the production of singlet oxygen. In addition, the fluorescence quenching effectiveness of SiQDs-3 also showed a strong linear relationship with TC concentration in the range of 0-1.2 µM with a detection limit of 0.318 µM, as a result of the internal filtering effect. Together, SiQDs not only can be a candidate to treat resistant bacterial infections, but also may be applied in practical detection of TC.


Subject(s)
Quantum Dots , Quantum Dots/chemistry , Silicon/chemistry , Escherichia coli , Staphylococcus aureus , Tetracycline , Anti-Bacterial Agents
3.
Angew Chem Int Ed Engl ; 58(20): 6569-6573, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30908782

ABSTRACT

Fenestranes, a specific class of natural products, contain four fused rings that share a central quaternary carbon atom. The fungal natural product penifulvin A (1) is a potent insecticidal sesquiterpene that features the [5.5.5.6]dioxafenestrane ring. Although the chemical synthesis of 1 has been achieved recently, the enzymes catalysing the cyclization and oxidation of FPP to 1 remain unknown. In this work, we identified a concise pathway that uses only three enzymes to produce 1. A new sesquiterpene cyclase (PeniA) generates the angular triquinane scaffold silphinene (6). A cytochrome P450 (PeniB) and a flavin-dependent monooxygenase (PeniC) catalyse a series of oxidation reactions to transform 6 into 1, including oxidation of the C15 methyl group to a carboxylate moiety, oxidative coupling of the C15 carboxylate and the C1-C2 olefin to form a γ-lactone, and Baeyer-Villiger oxidation to form a δ-lactone. Our results demonstrate the highly concise and efficient ways in which fungal biosynthetic pathways can generate complex sesquiterpene scaffolds.


Subject(s)
Fungi/chemistry , Sesquiterpenes/chemical synthesis , Biosynthetic Pathways
SELECTION OF CITATIONS
SEARCH DETAIL