Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci China Life Sci ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38512561

ABSTRACT

Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.

2.
Comput Methods Programs Biomed ; 244: 107971, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128463

ABSTRACT

BACKGROUND AND OBJECTIVE: Dynamic spectrum (DS) theory is a new non-invasive detection method of human blood components that can theoretically eliminate individual differences in static tissues and the influence of other measurement conditions to achieve blood component analysis with high precision. In order to obtain a high signal-to-noise ratio dynamic spectrum, researchers have proposed various dynamic spectrum extraction methods. METHODS: In this article, we propose three indexes: stability coefficient (SC), data point adoption rate (DAR), and smoothness of spectrum (SS). These solve the difficulty in evaluating different dynamic spectrum extraction methods without establishing mathematical models. RESULTS: In this study, DS is extracted using different dynamic spectrum extraction methods from the experimental data of 677 volunteers. Then three indexes, SC, DAR, and SS, are calculated. The trends in the scatter plot of the relationship between the three indexes and modeling results of hemoglobin, red blood cell count, and white blood cell count and the related coefficients demonstrate that SC, DAR, and SS are feasible and effective for evaluation. The results show that the root mean square extraction performs best, while the peak-to-peak value and the fast Fourier transform extraction are the worst. CONCLUSIONS: This study proposes feasible and effective indexes for evaluating dynamic spectrum extraction methods, providing a possibility for further research on high-precision dynamic spectrum extraction methods.


Subject(s)
Hemoglobins , Models, Theoretical , Humans , Hemoglobins/analysis , Signal-To-Noise Ratio
3.
Elife ; 122023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134226

ABSTRACT

As the deepest vertebrate in the ocean, the hadal snailfish (Pseudoliparis swirei), which lives at a depth of 6,000-8,000 m, is a representative case for studying adaptation to extreme environments. Despite some preliminary studies on this species in recent years, including their loss of pigmentation, visual and skeletal calcification genes, and the role of trimethylamine N-oxide in adaptation to high-hydrostatic pressure, it is still unknown how they evolved and why they are among the few vertebrate species that have successfully adapted to the deep-sea environment. Using genomic data from different trenches, we found that the hadal snailfish may have entered and fully adapted to such extreme environments only in the last few million years. Meanwhile, phylogenetic relationships show that they spread into different trenches in the Pacific Ocean within a million years. Comparative genomic analysis has also revealed that the genes associated with perception, circadian rhythms, and metabolism have been extensively modified in the hadal snailfish to adapt to its unique environment. More importantly, the tandem duplication of a gene encoding ferritin significantly increased their tolerance to reactive oxygen species, which may be one of the important factors in their adaptation to high-hydrostatic pressure.


Subject(s)
Ecosystem , Vertebrates , Animals , Phylogeny , Vertebrates/genetics , Chromosomes
4.
Biology (Basel) ; 12(10)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37887025

ABSTRACT

Little is known about how changes in the biodiversity and functional traits of macroinvertebrates in rivers respond to the responses of anthropic pressures and their driving factors. Macroinvertebrates were sampled at 17 sites in the Irtysh River Basin and classified macroinvertebrates into 10 traits and 38 categories between May and August 2022. Then, we performed R-mode linked to Q-mode (RLQ) analysis and calculated functional richness, evenness, divergence, and Rao's quadratic entropy (RaoQ) for each site and community-weighted means for each trait category. Our results indicated that there were pronounced alterations in species variability in the urban region. Functional divergence indicated fierce competition among species and considerable niche overlap in the urban region. Functional evenness indicated that species abundance distribution and interspecific functional distance were not uniform in the urban region. Functional richness indicated that the urban region was the strongest region in terms of niche occupation, resource utilization, and buffering capacity for environmental fluctuations. Rao's quadratic entropy showed that the trait difference of macroinvertebrates was the largest in all regions, which was caused by the gradient environmental difference. Research has revealed that urbanization significantly influences the evolutionary trajectory of macroinvertebrate fauna, culminating in an upsurge in pollution-tolerant species and a convergence of functional traits. We recommend strengthening the control of urban and industrial pollution and wise planning and management of land and water resources to mitigate the impact of anthropogenic destruction on habitat fragmentation in the Irtysh River Basin.

5.
Sci China Life Sci ; 66(7): 1554-1568, 2023 07.
Article in English | MEDLINE | ID: mdl-36802318

ABSTRACT

The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus. However, the genetic basis of these adaptations in Tibetan catfishes remains elusive. In this study, we performed comparative genomic analyses based on the chromosome-level genome of Glyptosternum maculatum in family Sisoridae and detected some proteins with conspicuously high evolutionary rates in particular in genes involved in skeleton development, energy metabolism, and hypoxia response. We found that the hoxd12a gene evolved faster and a loss-of-function assay of hoxd12a supports a potential role for this gene in shaping the enlarged fins of these Tibetan catfishes. Other genes with amino acid replacements and signatures of positive selection included proteins involved in low temperature (TRMU) and hypoxia (VHL) responses. Functional assays reveal that the G. maculatumTRMU allele generates more mitochondrial ATP than the ancestral allele found in low-altitude fishes. Functional assays of VHL alleles suggest that the G. maculatum allele has lower transactivation activity than the low-altitude forms. These findings provide a window into the genomic underpinnings of physiological adaptations that permit G. maculatum to survive in the harsh environment of the Tibetan Himalayas that mirror those that are convergently found in other vertebrates such as humans.


Subject(s)
Catfishes , Humans , Animals , Catfishes/genetics , Tibet , Adaptation, Physiological/genetics , Acclimatization , Hypoxia/genetics , Altitude
6.
Sci China Life Sci ; 66(6): 1379-1391, 2023 06.
Article in English | MEDLINE | ID: mdl-36648612

ABSTRACT

High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.


Subject(s)
Adaptation, Physiological , Eels , Animals , Phylogeny , Adaptation, Physiological/genetics , Eels/genetics , Cytoskeleton , Chromosomes/genetics
7.
Cell Biosci ; 12(1): 197, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471394

ABSTRACT

BACKGROUND: The synthesis and secretion of renin in juxtaglomerular (JG) cells are closely regulated by the blood pressure. To date, however, the molecular identity through which JG cells respond to the blood pressure remains unclear. RESULTS: Here we discovered that Piezo1, a mechanosensitive ion channel, was colocalized with renin in mouse kidney as well as As4.1 cells, a commonly used JG cell line. Activation of Piezo1 by its agonist Yoda1 induced an intracellular calcium increase and downregulated the expression of renin in these cells, while knockout of Piezo1 in JG cells abolished the effect of Yoda1. Meanwhile, mechanical stress using microfluidics also induced an intracellular calcium increase in wildtype but not Piezo1 knockout JG cells. Mechanistically, we demonstrated that activation of Piezo1 upregulated the Ptgs2 expression via the calcineurin-NFAT pathway and increased the production of Ptgs2 downstream molecule PGE2 in JG cells. Surprisingly, we discovered that increased PGE2 could decreased the renin expression through the PGE2 receptor EP1 and EP3, which inhibited the cAMP production in JG cells. In mice, we found that activation of Piezo1 significantly downregulated the renin expression and blood pressure in wildtype but not adeno-associated virus (AAV)-mediated kidney specific Piezo1 knockdown mice. CONCLUSIONS: In summary, these results revealed that activation of Piezo1 could downregulate the renin expression in JG cells and mice, subsequently a reduction of blood pressure, highlighting its therapeutic potential as a drug target of the renin-angiotensin system.

8.
Natl Sci Rev ; 9(12): nwac291, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36778108

ABSTRACT

Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.

9.
Cell Biosci ; 11(1): 203, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895340

ABSTRACT

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis globally. Increasing evidence suggests the importance of host immunity in the development of IgAN, but its dynamics during the early stage of IgAN are still largely unclear. RESULTS: Here we successfully resolved the early transcriptomic changes in immune cells of IgAN by conducting single-cell RNA-sequencing (scRNA-seq) with peripheral blood mononuclear cells. The differentially expressed genes (DEGs) between control and IgAN were predominantly enriched in NK cell-mediated cytotoxicity and cell killing pathways. Interestingly, we discovered that the number and cytotoxicity of NK cells are significantly reduced in IgAN patients, where both the number and marker genes of NK cells were negatively associated with the clinical parameters, including the levels of urine protein creatinine ratio (UPCR), serum galactose-deficient IgA1 and IgA. A distinctive B cell subset, which had suppressed NFκB signaling was predominantly in IgAN and positively associated with disease progression. Moreover, the DEGs of B cells were enriched in different viral infection pathways. Classical monocytes also significantly changed in IgAN and a monocyte subset expressing interferon-induced genes was positively associated with the clinical severity of IgAN. Finally, we identified vast dynamics in intercellular communications in IgAN. CONCLUSIONS: We dissected the immune landscape of IgAN at the single-cell resolution, which provides new insights in developing novel biomarkers and immunotherapy against glomerulonephritis.

10.
Front Physiol ; 12: 752679, 2021.
Article in English | MEDLINE | ID: mdl-34721077

ABSTRACT

Kidney diseases are highly prevalent and treatment is costly. Immune cells play important roles in kidney diseases; however, it has been challenging to investigate the contribution of each cell type in kidney pathophysiology. Recently, the development of single-cell sequencing technology has allowed the extensive study of immune cells in blood, secondary lymphoid tissues, kidney biopsy and urine samples, helping researchers generate a comprehensive immune cell atlas for various kidney diseases. Here, we discuss several recent studies using scRNA-seq technology to explore the immune-related kidney diseases, including lupus nephritis, diabetic kidney disease, IgA nephropathy, and anti-neutrophil cytoplasmic antibody-associated glomerulonephritis. Application of scRNA-seq successfully defined the transcriptome profiles of resident and infiltrating immune cells, as well as the intracellular communication networks between immune and adjacent cells. In addition, the discovery of similar immune cells in blood and urine suggests the possibility of examining kidney immunity without biopsy. In conclusion, these immune cell atlases will increase our understanding of kidney immunology and contribute to novel therapeutics for patients with kidney diseases.

11.
Cell Death Dis ; 12(11): 1034, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34718327

ABSTRACT

Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.


Subject(s)
Antineoplastic Agents/adverse effects , DNA Damage , Extracellular Signal-Regulated MAP Kinases/metabolism , Intestines/pathology , Mucositis/enzymology , Mucositis/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cytoprotection/drug effects , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Fluorouracil/adverse effects , Male , Mice, Inbred C57BL , Mucositis/chemically induced
12.
Cell ; 184(5): 1377-1391.e14, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33545088

ABSTRACT

Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.


Subject(s)
Biological Evolution , Fishes/genetics , Animal Fins/physiology , Animals , Cardiovascular Physiological Phenomena , Cardiovascular System/anatomy & histology , Extremities/physiology , Fishes/classification , Genome , Lung/anatomy & histology , Lung/physiology , Phylogeny , Receptors, Odorant/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Vertebrates/classification , Vertebrates/genetics
13.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33545087

ABSTRACT

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Subject(s)
Adaptation, Biological , Biological Evolution , Fishes/genetics , Whole Genome Sequencing , Animal Fins/anatomy & histology , Animal Fins/physiology , Animals , Extremities/anatomy & histology , Extremities/physiology , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Phylogeny , Respiratory Physiological Phenomena , Respiratory System/anatomy & histology , Vertebrates/genetics
14.
J Pharmacol Exp Ther ; 376(2): 281-293, 2021 02.
Article in English | MEDLINE | ID: mdl-33318078

ABSTRACT

G protein-coupled estrogen receptor (GPER) might be involved in ulcerative colitis (UC), but the direct effect of GPER on UC is still unclear. We used male C57BL/6 mice to establish the acute colitis model with administration of dextran sulfate sodium and explored the effect of GPER on acute colitis and its possible mechanism. The selective GPER agonist G-1 inhibited weight loss and colon shortening and decreased the disease activity index for colitis and histologic damage in mice with colitis. All of these effects were prevented by a selective GPER blocker. G-1 administration prevented the dysfunction of tight junction protein expression and goblet cells in colitis model and thus inhibited the increase of mucosal permeability in colitis-suffering mice significantly. GPER activation reduced expression of glucose-regulating peptide-78 and anti-CCAAT/enhancer-binding protein homologous protein and attenuated the three arms of the unfolded protein response in colitis. G-1 therapy inhibited the increase of cleavage caspase-3- and TUNEL-positive cells in colonic crypts in the colitis model, increased the number of Ki67- and bromodeoxyuridine-positive cells in crypts, and reversed the decrease of cyclin D1 and cyclin B1 expression in colitis, indicating its protective effect on crypt cells. In cultured CCD841 cells, G-1 treatment fought against cell injury induced by endoplasmic reticulum stress. These findings demonstrate that GPER activation prevents colitis by protecting the colonic crypt cells, which are associated with inhibition of endoplasmic reticulum stress. SIGNIFICANCE STATEMENT: We demonstrate that G protein-coupled estrogen receptor (GPER) activation prevents dextran sulfate sodium-induced acute colitis by protecting the crypt cells, showing that it inhibited the crypt cell apoptosis and protected proliferation of crypt cells, which resulted in protection of the intestinal mucosal barrier. This protective effect was achieved (at least in part) by inhibiting endoplasmic reticulum stress. Mucosal healing is regarded as a key therapeutic target for colitis, and GPER is expected to become a new therapeutic target for colitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/metabolism , Enterocytes/metabolism , Receptors, G-Protein-Coupled/agonists , Stem Cells/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Apoptosis , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cells, Cultured , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/prevention & control , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Goblet Cells/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Unfolded Protein Response
15.
Mol Ecol Resour ; 21(3): 912-923, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33191666

ABSTRACT

The edible silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), which are two of the "Four Domesticated Fish" of China, are cultivated intensively worldwide. Here, we constructed 837- and 845-Mb draft genome assemblies for the silver carp and the bighead carp, respectively, including 24,571 and 24,229 annotated protein-coding genes. Genetic maps, anchoring 71.7% and 83.8% of all scaffolds, were obtained for the silver and bighead carp, respectively. Phylogenetic analysis showed that the bighead carp formed a clade with the silver carp, with an estimated divergence time of 3.6 million years ago; the time of divergence between the silver carp and zebrafish was 50.7 million years ago. An East Asian cyprinid genome-specific chromosome fusion took place ~9.2 million years after this clade diverged from the clade containing the common carp and Sinocyclocheilus. KEGG and GO analyses indicated that the expanded gene families in the silver and bighead carp were associated with diseases, the immune system and environmental adaptations. Genomic regions differentiating the silver and bighead carp populations were detected based on the whole-genome sequences of 42 individuals. Genes associated with the divergent regions were associated with reproductive system development and the development of primary female sexual characteristics. Thus, our results provided a novel systematic genomic analysis of the East Asian cyprinids, as well as the evolution and speciation of the silver carp and bighead carp.


Subject(s)
Biological Evolution , Carps , Genetic Speciation , Animals , Carps/classification , Carps/genetics , China , Chromosome Mapping , Female , Phylogeny , Whole Genome Sequencing , Zebrafish
16.
BMC Genomics ; 21(1): 801, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33203359

ABSTRACT

BACKGROUND: Hundreds of genomes and transcriptomes of fish species have been sequenced in recent years. However, fish scholarship currently lacks a comprehensive, integrated, and up-to-date collection of fish genomic data. RESULTS: Here we present FishDB, the first database for fish multi-level omics data, available online at http://fishdb.ihb.ac.cn . The database contains 233 fish genomes, 201 fish transcriptomes, 5841 fish mitochondrial genomes, 88 fish gene sets, 16,239 miRNAs of 65 fishes, 1,330,692 piRNAs and 4852 lncRNAs of Danio rerio, 59,040 Mb untranslated regions (UTR) of 230 fishes, and 31,918 Mb coding sequences (CDS) of 230 fishes. Among these, we newly generated a total of 11 fish genomes and 53 fish transcriptomes. CONCLUSIONS: This release contains over 410,721.67 Mb sequences and provides search functionality, a BLAST server, JBrowse, and PrimerServer modules.


Subject(s)
Fishes , Genome, Mitochondrial , Animals , Fishes/genetics , Genomics , Phylogeny , Transcriptome
17.
Clin Sci (Lond) ; 134(16): 2223-2234, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32808649

ABSTRACT

Exosomes have been shown to effectively regulate the biological functions of target cells. Here, we investigated the protective effect and mechanism of hypoxia-induced renal tubular epithelial cells (TECs)-derived exosomes on acute tubular injury. We found that in vitro hypoxia-induced tubular exosomes (Hy-EXOs) were protective in acute tubular injury by promoting TECs proliferation and improving mitochondrial functions. By using exosome miRNA sequencing, we identified miR-20a-5p was abundant and was a key mechanism for the protective effect of Hy-EXOs on tubular injury as up-regulation of miR-20a-5p enhanced but down-regulation of miR-20a-5p inhibited the protective effect of Hy-EXOs on tubular injury under hypoxia conditions. Further study in a mouse model of ischemia-reperfusion-induced acute kidney injury (IRI-AKI) also confirmed this notion as pre-treating mice with the miR-20a-5p agomir 48 h prior to AKI induction was capable of inhibiting IRI-AKI by lowering serum levels of creatinine and urea nitrogen, and attenuating the severity of tubular necrosis, F4/80(+) macrophages infiltration and vascular rarefaction. Mechanistically, the protective effect of miR-20a-5p on acute kidney injury (AKI) was associated with inhibition of TECs mitochondrial injury and apoptosis in vitro and in vivo. In conclusion, miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Results from the present study also reveal that miR-20a-5p may represent as a novel therapy for AKI.


Subject(s)
Acute Kidney Injury/genetics , Epithelial Cells/metabolism , Exosomes/genetics , Kidney Tubules, Proximal/metabolism , MicroRNAs/genetics , Reperfusion Injury/genetics , Animals , Cell Line , Disease Models, Animal , Gene Expression Regulation , Humans , Hypoxia , Kidney Tubules, Proximal/cytology , Male , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Reactive Oxygen Species/metabolism
18.
BMC Nephrol ; 21(1): 48, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32050921

ABSTRACT

BACKGROUND: Emerging evidence has demonstrated that acute kidney injury (AKI) is an important risk factor associated with increased morbidity and mortality in diabetic ketoacidosis (DKA) patients. The current study aimed to investigate the incidence rate, risk factors, long-term renal outcomes, and mortality in DKA patients with AKI. METHODS: A total of 179 patients diagnosed with DKA at Sun Yat-sen Memorial Hospital from January 2012 to January 2018 were included in the analysis. AKI was diagnosed according to the 2012 KDIGO criteria. Risk factors, long-term renal outcomes, and mortality were analyzed by logistic regression and Cox proportional hazards models. RESULTS: Among 179 DKA patients, 98 patients (54.75%) were diagnosed as AKI. Aging; increased blood glucose, serum uric acid and white blood cells; decreased serum pH and albumin; coma; and preexisting chronic kidney disease (CKD) were risk factors of AKI in patients with DKA. During follow-up, DKA patients with AKI showed more than a two-fold decline in eGFR within 1 year after discharge from the hospital when compared with non-AKI DKA patients. Furthermore, AKI was also an independent risk factor for poor long-term renal outcomes and mortality in DKA patients. CONCLUSIONS: Multiple risk factors contribute to the development of AKI in DKA patients. AKI and advanced AKI stage are associated with rapid progressive CKD and long-term mortality in patients with DKA.


Subject(s)
Acute Kidney Injury/etiology , Diabetic Ketoacidosis/complications , Acute Kidney Injury/epidemiology , Acute Kidney Injury/mortality , Adult , Female , Follow-Up Studies , Glomerular Filtration Rate , Humans , Incidence , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Retrospective Studies , Risk Factors
19.
Nat Ecol Evol ; 3(5): 823-833, 2019 05.
Article in English | MEDLINE | ID: mdl-30988486

ABSTRACT

It is largely unknown how living organisms-especially vertebrates-survive and thrive in the coldness, darkness and high pressures of the hadal zone. Here, we describe the unique morphology and genome of Pseudoliparis swirei-a recently described snailfish species living below a depth of 6,000 m in the Mariana Trench. Unlike closely related shallow sea species, P. swirei has transparent, unpigmented skin and scales, thin and incompletely ossified bones, an inflated stomach and a non-closed skull. Phylogenetic analyses show that P. swirei diverged from a close relative living near the sea surface about 20 million years ago and has abundant genetic diversity. Genomic analyses reveal that: (1) the bone Gla protein (bglap) gene has a frameshift mutation that may cause early termination of cartilage calcification; (2) cell membrane fluidity and transport protein activity in P. swirei may have been enhanced by changes in protein sequences and gene expansion; and (3) the stability of its proteins may have been increased by critical mutations in the trimethylamine N-oxide-synthesizing enzyme and hsp90 chaperone protein. Our results provide insights into the morphological, physiological and molecular evolution of hadal vertebrates.


Subject(s)
Acclimatization , Adaptation, Physiological , Animals , Phylogeny
20.
Gene ; 643: 55-60, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29174964

ABSTRACT

Macrophage foam cell formation is a key initiating event in the pathogenesis of atherosclerosis. This work was conducted to determine the role of microRNA (miR)-212 in the transformation of foam cells from macrophages. We examined the expression of miR-212 in atherosclerotic lesions in an apoE-deficient (apoE-/-) mouse model. The effects of miR-212 overexpression and knockdown on lipid accumulation and cholesterol homeostasis in THP-1 macrophages after exposure to oxidized low-density lipoprotein (oxLDL). The mechanism underlying the activity of miR-212 was explored. It was found that miR-212 was downregulated in atherosclerotic lesions and macrophages from apoE-/- mice fed high-fat diet, compared to the equivalents from apoE-/- mice fed standard diet. Overexpression of miR-212 promoted lipid accumulation in oxLDL-treated THP-1 macrophages, whereas miR-212 depletion exerted an opposite effect. Macrophage cholesterol efflux to apolipoprotein A-I was significantly reduced by miR-212, which was accompanied by reduced ABCA1 expression. Mechanistically, miR-212 targeted sirtuin 1 (SIRT1) to repress the expression of ABCA1 in THP-1 macrophages. Rescue experiments confirmed that co-expression of SIRT1 attenuated lipid accumulation and restored cholesterol efflux in miR-212-overexpressing THP-1 macrophages. Collectively, miR-212 facilitates macrophage foam cell formation and suppresses ABCA1-dependent cholesterol efflux through downregulation of SIRT1. Targeting miR-212 may provide a potential therapeutic strategy for atherosclerosis.


Subject(s)
Cholesterol/metabolism , Lipid Metabolism/genetics , MicroRNAs/metabolism , Sirtuin 1/metabolism , THP-1 Cells/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Atherosclerosis/genetics , Cholesterol/genetics , Diet, High-Fat , Foam Cells/metabolism , Humans , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Lipoproteins, LDL/pharmacology , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Sirtuin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...