Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134161, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569338

ABSTRACT

BACKGROUND: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.


Subject(s)
Air Pollutants , Environmental Exposure , Particulate Matter , Particulate Matter/analysis , China/epidemiology , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/adverse effects , Female , Male , Middle Aged , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/chemically induced , Alzheimer Disease/epidemiology , Alzheimer Disease/chemically induced , Aged, 80 and over , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Air Pollution/adverse effects , Air Pollution/analysis , Prevalence
2.
Environ Pollut ; 334: 122138, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37453686

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have attracted worldwide attention as one of persistent organic pollutants; however, there is limited knowledge about the exposure concentrations of PFAS-contained ambient particulate matter and the related health risks. This study investigated the abundance and distribution of 32 PFAS in fine particulate matter (PM2.5) collected from 93 primary or secondary schools across the Pearl River Delta region (PRD), China. These chemicals comprise four PFAS categories which includes perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl acid (PFAA) precursors and PFAS alternatives. In general, concentrations of target PFAS ranged from 11.52 to 419.72 pg/m3 (median: 57.29 pg/m3) across sites. By categories, concentrations of PFSAs (median: 26.05 pg/m3) were the dominant PFAS categories, followed by PFCAs (14.25 pg/m3), PFAS alternatives (2.75 pg/m3) and PFAA precursors (1.10 pg/m3). By individual PFAS, PFOS and PFOA were the dominant PFAS, which average concentration were 24.18 pg/m3 and 6.05 pg/m3, respectively. Seasonal variation showed that the concentrations of PFCAs and PFSAs were higher in winter than in summer, whereas opposite seasonal trends were observed in PFAA precursors and PFAS alternatives. Estimated daily intake (EDI) and hazard quotient (HQ) were used to assess human inhalation-based exposure risks to PFAS. Although the health risks of PFAS via inhalation were insignificant (HQ far less than one), sufficient attention should be levied to ascertain the human exposure risks through inhalation, given that exposure to PFAS through air inhalation is a long term and cumulative process.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Particulate Matter , Environmental Monitoring , Fluorocarbons/analysis , Sulfonic Acids , China , Carboxylic Acids/analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
3.
Cancer Res ; 83(8): 1249-1263, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36715635

ABSTRACT

Angiogenesis is vital for tumor growth and metastasis. Emerging evidence suggests that metabolic reprogramming in endothelial cells (EC) may affect angiogenesis. Here, we showed that multiple regulators in the fructose metabolism pathway, especially fructose transporter SLC2A5 and fructose-metabolizing enzyme ketohexokinase (KHK), were upregulated in tumor endothelial cells from hepatocellular carcinoma (HCC). In mouse models with hepatoma xenografts or with Myc/sgp53-induced liver cancer, dietary fructose enhanced tumor angiogenesis, tumor growth, and metastasis, which could be attenuated by treatment with an inhibitor of SLC2A5. Furthermore, vessel growth was substantially increased in fructose-containing Matrigel compared with PBS-Matrigel. Inhibiting fructose metabolism in EC cells in vivo using EC-targeted nanoparticles loaded with siRNA against KHK significantly abolished fructose-induced tumor angiogenesis. Fructose treatment promoted the proliferation, migration, and tube formation of ECs and stimulated mitochondrial respiration and ATP production. Elevated fructose metabolism activated AMPK to fuel mitochondrial respiration, resulting in enhanced EC migration. Fructose metabolism was increased under hypoxic conditions as a result of HIF1α-mediated upregulation of multiple genes in the fructose metabolism pathway. These findings highlight the significance of fructose metabolism in ECs for promoting tumor angiogenesis. Restricting fructose intake or targeting fructose metabolism is a potential strategy to reduce angiogenesis and suppress tumor growth. SIGNIFICANCE: Fructose metabolism in endothelial cells fuels mitochondrial respiration to stimulate tumor angiogenesis, revealing fructose metabolism as a therapeutic target and fructose restriction as a dietary intervention for treating cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Endothelial Cells/metabolism , AMP-Activated Protein Kinases/metabolism , Neovascularization, Pathologic/drug therapy , Fructose , Glucose Transporter Type 5
4.
Sci Total Environ ; 865: 161092, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36586693

ABSTRACT

The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Animals , Mice , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China , Dust/analysis , Environmental Monitoring , Particle Size , Particulate Matter/toxicity , Particulate Matter/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...