Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1395267, 2024.
Article in English | MEDLINE | ID: mdl-38817449

ABSTRACT

Background: Traditional Chinese medicine (TCM) comprising herbal formulas has been used for millennia to treat various diseases, such as insomnia, based on distinct syndrome types. Although TCM has been proposed to be effective in insomnia through gut microbiota modulation in animal models, human studies remain limited. Therefore, this study employs machine learning and integrative network techniques to elucidate the role of the gut microbiome in the efficacies of two TCM formulas - center-supplementing and qi-boosting decoction (CSQBD) and spleen-tonifying and yin heat-clearing decoction (STYHCD) - in treating insomnia patients diagnosed with spleen qi deficiency and spleen qi deficiency with stomach heat. Methods: Sixty-three insomnia patients with these two specific TCM syndromes were enrolled and treated with CSQBD or STYHCD for 4 weeks. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) every 2 weeks. In addition, variations in gut microbiota were evaluated through 16S rRNA gene sequencing. Stress and inflammatory markers were measured pre- and post-treatment. Results: At baseline, patients exhibiting only spleen qi deficiency showed slightly lesser severe insomnia, lower IFN-α levels, and higher cortisol levels than those with spleen qi deficiency with stomach heat. Both TCM syndromes displayed distinct gut microbiome profiles despite baseline adjustment of PSQI, ISI, and IFN-α scores. The nested stratified 10-fold cross-validated random forest classifier showed that patients with spleen qi deficiency had a higher abundance of Bifidobacterium longum than those with spleen qi deficiency with stomach heat, negatively associated with plasma IFN-α concentration. Both CSQBD and STYHCD treatments significantly improved sleep quality within 2 weeks, which lasted throughout the study. Moreover, the gut microbiome and inflammatory markers were significantly altered post-treatment. The longitudinal integrative network analysis revealed interconnections between sleep quality, gut microbes, such as Phascolarctobacterium and Ruminococcaceae, and inflammatory markers. Conclusion: This study reveals distinct microbiome profiles associated with different TCM syndrome types and underscores the link between the gut microbiome and efficacies of Chinese herbal formulas in improving insomnia. These findings deepen our understanding of the gut-brain axis in relation to insomnia and pave the way for precision treatment approaches leveraging TCM herbal remedies.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Medicine, Chinese Traditional , Sleep Initiation and Maintenance Disorders , Humans , Gastrointestinal Microbiome/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Female , Middle Aged , Adult , RNA, Ribosomal, 16S/genetics , Spleen/microbiology , Syndrome , Qi
2.
Front Aging Neurosci ; 15: 1340706, 2023.
Article in English | MEDLINE | ID: mdl-38288278

ABSTRACT

Background: The calibrator in immunoassay plays an essential role in diagnosing Alzheimer's disease (AD). Presently, the most well-studied biomarkers for AD diagnosis are three phosphorylated Tau (p-Tau): p-Tau231, p-Tau217, and p-Tau181. Glycogen synthase-3beta (GSK3ß)-phosphorated Tau-441 is the most commonly used calibrator for p-Tau immunoassays. However, the batch-to-batch inconsistency issue of the commonly used GSK3ß-phosphorylated Tau-441 limits its clinical application. Methods: We have successfully generated and characterized 61 Tau monoclonal antibodies (mAbs) with distinct epitopes by using the hybridoma technique and employed them as capture or detection antibodies for p-Tau immunoassays. Through chemical synthesis, we synthesized calibrators, which are three peptides including capture and detection antibody epitopes, for application in immunoassays that detect p-Tau231, p-Tau217, and p-Tau181. The novel calibrators were applied to Enzyme-linked immunosorbent assay (ELISA) and Single-molecule array (Simoa) platforms to validate their applicability and establish a range of p-Tau immunoassays. Results: By employing the hybridoma technique, 49 mAbs recognizing Tau (1-22), nine mAbs targeting p-Tau231, one mAb targeting p-Tau217, and two mAbs targeting p-Tau181 were developed. Peptides, including recognition epitopes of capture and detection antibodies, were synthesized. These peptides were used as calibrators to develop 60 immunoassays on the ELISA platform, of which six highly sensitive immunoassays were selected and applied to the ultra-sensitive Simoa platform. Remarkably, the LODs were 2.5, 2.4, 31.1, 32.9, 46.9, and 52.1 pg/ml, respectively. Conclusion: Three novel p-Tau calibrators were successfully generated and validated, which solved the batch-to-batch inconsistency issue of GSK3ß-phosphorylated Tau-441. The novel calibrators exhibit the potential to promote the standardization of clinical AD diagnostic calibrators. Furthermore, we established a series of highly sensitive and specific immunoassays on the Simoa platform based on novel calibrators, which moved a steady step forward in p-Tau immunoassay application for AD diagnosis.

3.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566203

ABSTRACT

Patulin (PAT) is a mycotoxin, with several acute, chronic, and cellular level toxic effects, produced by various fungi. A limit for PAT in food of has been set by authorities to guarantee food safety. Research on PAT in tea has been very limited although tea is the second largest beverage in the world. In this paper, HPLC-DAD and GC-MS methods for analysis of PAT in different tea products, such as non-fermented (green tea), partially fermented (oolong tea, white tea, yellow tea), completely fermented (black tea), and post-fermented (dark tea and Pu-erh tea) teas were developed. The methods showed good selectivity with regard to tea pigments and 5-hydroxymethylfurfural (5-HMF) and a recovery of 90-102% for PAT at a 10-100 ppb spiking level. Limit of detection (LOD) and limit of quantification (LOQ) in tea were 1.5 ng/g and 5.0 ng/g for HPLC-UV, and 0.25 ng/g and 0.83 ng/g for GC-MS. HPLC was simpler and more robust, while GC-MS showed higher sensitivity and selectivity. GC-MS was used to validate the HPLC-UV method and prove its accuracy. The PAT content of 219 Chinese tea samples was investigated. Most tea samples contained less than 10 ng/g, ten more than 10 ng/g and two more than 50 ng/g. The results imply that tea products in China are safe with regard to their PAT content. Even an extreme daily consumption of 25 g of the tea with the highest PAT content (124 ng/g), translates to an intake of only 3 µg/person/day, which is still an order of magnitude below the maximum allowed daily intake of 30 µg for an adult.


Subject(s)
Camellia sinensis , Patulin , Adult , Beverages/analysis , Camellia sinensis/chemistry , Chromatography, High Pressure Liquid/methods , Humans , Patulin/analysis , Tea/chemistry
4.
Am J Chin Med ; 50(3): 691-721, 2022.
Article in English | MEDLINE | ID: mdl-35282804

ABSTRACT

Pogostemonis Herba (PH) is the dried aerial parts of Pogostemon cablin (Blanco) Benth, which is mainly distributed and used in Asian countries. PH is an aromatic damp-resolving drug in traditional Chinese medicine (TCM), which is usually used for the treatment of vomiting, chest tension, tiredness, abdominal pain, diarrhea, and headache. In this review, the summary of chemical constituents in the aerial parts, biological activities, history of uses, quality control methods, industrial applications, pharmacokinetics and network pharmacology are reported. By collating the chemical constituents of various parts of PH, a total of 174 components were identified, including 66 terpenes, 6 pyrones, 40 flavonoids, 21 phenylpropanoids, 9 steroids, 4 polysaccharides and 28 others. Pharmacological research has found that PH possesses multi-pharmacological activities, including regulating the gastrointestinal tract, inhibition of pathogenic microorganisms, and anti-inflammation, which provide more scientific interpretation for the clinical usage of PH. In addition, the shortcomings of the current research on PH and the recommendation of future studies on PH are analyzed. We hope this review can provide some insight for further research and applications of PH in future.


Subject(s)
Pogostemon , Flavonoids , Network Pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Quality Control , Terpenes
SELECTION OF CITATIONS
SEARCH DETAIL