Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(33): 30612-30620, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636977

ABSTRACT

To provide a novel intramolecular self-redox switch, a boron-based sandwich-like complex Rb3BeB6Be'Rb'3 is achieved by using theoretical computations. An applicable oriented external electric field (OEEF) can result in the occurrence of intramolecular self-redox (IMSR) with a long-range electron transfer from tetrahedral Be'Rb'3 to Rb3Be and subsequently [Rb3Be]3+[B6]6-[Be'Rb'3]3+ (D3d) changes to [Rb3Be]2+[B6]6-[Be'Rb'3]4+ (C3v), accompanying high-performance NLO switchable effect for both static and dynamic first hyperpolarizability (ß0). [Rb3Be]3+[B6]6-[Be'Rb'3]3+ (off-form) owns zero of dipole moment (µ0) and ß0, while [Rb3Be]2+[B6]6-[Be'Rb'3]4+ (on-form) exhibits a µ0 of 3.36 D and a ß0e of 2.18 × 105 au. The different dynamic first hyperpolarizabilities between [Rb3Be]3+[B6]6-[Be'Rb'3]3+ and [Rb3Be]2+[B6]6-[Be'Rb'3]4+ are also significant. This indicates that Rb3BeB6Be'Rb'3 is a potential candidate for an IMSR NLO switch.

2.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240102

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased.


Subject(s)
Hemiptera , Oryza , Animals , Female , Larva , Population Growth , Spodoptera
3.
New Phytol ; 238(3): 1230-1244, 2023 05.
Article in English | MEDLINE | ID: mdl-36740568

ABSTRACT

Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.


Subject(s)
Hemiptera , Oryza , Animals , Female , Saliva , Vitellogenins/metabolism , Oryza/metabolism , Insecta , Hemiptera/physiology
4.
Plants (Basel) ; 10(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652695

ABSTRACT

Allene oxide synthase (AOS) is the second enzyme in the biosynthesis of the plant defensive hormone jasmonic acid (JA). In rice, there are two AOSs, OsAOS1 and OsAOS2. However, the role of these two AOS genes in herbivore-induced defenses in rice remains unidentified. We cloned the two rice AOS genes and observed that the transcript level of both OsAOS1 and OsAOS2 was enhanced by mechanical wounding, the infestation of the striped stem borer (SSB) (Chilo suppressalis) or brown planthopper (BPH) (Niaparvata lugens), and treatment with JA; however, OsAOS1 responded more rapidly to SSB infestation and JA treatment than did OsAOS2. The antisense expression of OsAOS1 (as-aos1) or OsAOS2 (as-aos2) decreased levels of SSB- or BPH-induced JA, which, in turn, reduced the production of SSB-induced trypsin protease inhibitor (TrypPI) and volatiles as well as the resistance of rice to SSB. In contrast, BPH preferred to feed and oviposit on wild-type (WT) plants over as-aos1 and as-aos2 plants. Moreover, the survival of BPH nymphs on as-aos1 or as-aos2 lines was significantly lower than on WT plants. The increased resistance of as-aos1 or as-aos2 plants to BPH correlated with higher levels of BPH-induced H2O2 and SA. These results indicate that OsAOS1 and OsAOS2 are both involved in herbivore-induced JA biosynthesis and play a vital role in determining the resistance of rice to chewing and phloem-feeding herbivores.

5.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532001

ABSTRACT

Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.


Subject(s)
Fatty Acid Desaturases/genetics , Hemiptera/physiology , Insect Proteins/genetics , Oryza , Animals , Eating , Fatty Acid Desaturases/metabolism , Female , Fertility , Gene Knockdown Techniques , Hemiptera/genetics , Herbivory , Insect Proteins/metabolism , Lipid Metabolism/genetics , Oryza/metabolism , Ovary/growth & development , Salicylic Acid/metabolism
6.
Int J Mol Sci ; 20(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893760

ABSTRACT

Desaturases are essentially required for unsaturated fatty acid (UFA) biosynthesis. We identified 10 genes encoding putative desaturases in the transcriptome database of the brown planthopper (BPH), Nilaparvata lugens. These include eight First Desaturase family genes, one cytochrome b5 fused desaturase gene (Nlug-Cytb5r) and one Sphingolipid Desaturase gene (Nlug-ifc). Transcript level profiling revealed significant variation in the expression patterns of these genes across tissues and developmental stages, which occur in a gene-specific manner. Interestingly, their expression was also modulated by the insect food source: the mRNA levels of Nlug-desatC and Nlug-Cytb5r were down-regulated, but the expression level of Nlug-desatA1-b and Nlug-desatA1-c were elevated in the BPH fed on the resistant rice variety Babawee as compared to the non-resistant variety Taichun Native 1 (TN1). Silencing Nlug-desatA1-b, Nlug-desatA1-c, or Nlug-Ifc reduced fatty acid composition and abundance in female BPH 1-d-old-adults compared to controls. Whereas, single knockdown of all ten desaturase genes significantly increased mortality of BPH nymphs compared with controls. Of the ten desaturase genes, knockdown of Nlug-desatA1-b and Nlug-desatA2 caused the highest mortality in BPH (91% and 97%, respectively). Our findings offer a base for expression and functional characterization of newly identified desaturase genes in BPH, and may contribute to RNA interference-based pest management strategies.


Subject(s)
Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Hemiptera/enzymology , Hemiptera/metabolism , Multigene Family , Amino Acid Sequence , Animals , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/metabolism , Female , Gene Expression Regulation, Developmental , Genome, Insect , Hemiptera/genetics , Likelihood Functions , Organ Specificity/genetics , Phylogeny , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Analysis
7.
Plant Physiol ; 173(3): 1920-1932, 2017 03.
Article in English | MEDLINE | ID: mdl-28126846

ABSTRACT

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests on rice (Oryza sativa) in Asia. After landing on plants, BPH rapidly accesses plant phloem and sucks the phloem sap through unknown mechanisms. We discovered a salivary endo-ß-1,4-glucanase (NlEG1) that has endoglucanase activity with a maximal activity at pH 6 at 37°C and is secreted into rice plants by BPH NlEG1 is highly expressed in the salivary glands and midgut. Silencing NlEG1 decreases the capacity of BPH to reach the phloem and reduces its food intake, mass, survival, and fecundity on rice plants. By contrast, NlEG1 silencing had only a small effect on the survival rate of BPH raised on artificial diet. Moreover, NlEG1 secreted by BPH did not elicit the production of the defense-related signal molecules salicylic acid, jasmonic acid, and jasmonoyl-isoleucine in rice, although wounding plus the application of the recombination protein NlEG1 did slightly enhance the levels of jasmonic acid and jasmonoyl-isoleucine in plants compared with the corresponding controls. These data suggest that NlEG1 enables the BPH's stylet to reach the phloem by degrading celluloses in plant cell walls, thereby functioning as an effector that overcomes the plant cell wall defense in rice.


Subject(s)
Endo-1,3(4)-beta-Glucanase/metabolism , Feeding Behavior/physiology , Hemiptera/physiology , Insect Proteins/metabolism , Oryza/parasitology , Amino Acid Sequence , Animals , Base Sequence , Cell Wall/metabolism , Cellulose/metabolism , Cyclopentanes/metabolism , Endo-1,3(4)-beta-Glucanase/classification , Endo-1,3(4)-beta-Glucanase/genetics , Fertility/genetics , Gene Expression Regulation, Enzymologic , Hemiptera/enzymology , Hemiptera/genetics , Host-Parasite Interactions , Insect Proteins/classification , Insect Proteins/genetics , Oxylipins/metabolism , Phloem/parasitology , Phylogeny , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Saliva/enzymology , Sequence Homology, Amino Acid
8.
Sci Rep ; 7: 40498, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098179

ABSTRACT

The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant's defense responses.


Subject(s)
Calcium-Binding Proteins/metabolism , EF Hand Motifs , Hemiptera/metabolism , Insect Proteins/metabolism , Oryza/immunology , Oryza/parasitology , Salivary Glands/metabolism , Amino Acid Sequence , Animals , Base Sequence , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/isolation & purification , Cyclopentanes/metabolism , Cytosol/metabolism , Feeding Behavior , Female , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Hydrogen Peroxide/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/isolation & purification , Isoleucine/analogs & derivatives , Isoleucine/metabolism , Larva/physiology , Oryza/genetics , Oxylipins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...