Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadl4450, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701202

ABSTRACT

Caulobacter crescentus Tad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular ß sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo-electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its ß region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified in Escherichia coli, maintaining infectivity against C. crescentus, which presents promising applications, including RNA delivery and phage display.


Subject(s)
Caulobacter crescentus , Fimbriae, Bacterial , Caulobacter crescentus/virology , Caulobacter crescentus/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/ultrastructure , Protein Binding , Cryoelectron Microscopy , Fimbriae Proteins/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , RNA Phages/metabolism , RNA Phages/chemistry , Models, Molecular
2.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38574145

ABSTRACT

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Subject(s)
Fimbriae, Bacterial , Pseudomonas Phages , Pseudomonas aeruginosa , RNA Viruses , Virus Internalization , Humans , Cryoelectron Microscopy , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/virology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/virology , RNA Viruses/chemistry , RNA Viruses/physiology , Pseudomonas Phages/chemistry , Pseudomonas Phages/physiology , Viral Proteins/metabolism
3.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553443

ABSTRACT

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Subject(s)
Acinetobacter , Bacteriophages , RNA Viruses , Humans , Fimbriae Proteins/metabolism , Acinetobacter/metabolism , Cryoelectron Microscopy , Fimbriae, Bacterial/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism
4.
bioRxiv ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38187755

ABSTRACT

Bacteria form groups comprised of cells and secreted adhesive matrix that controls their spatial organization. These groups - termed biofilms - can act as refuges from environmental disturbance and from biotic threats, including phages. Despite the ubiquity of temperate phages and bacterial biofilms, temperate phage propagation within biofilms has never been characterized on multicellular spatial scales. Here, we leverage several approaches to track temperate phages and distinguish between lytic and lysogenic infections. We determine that lysogeny within E. coli biofilms most often occurs within a predictable region of cell group architecture. Because lysogens are generally found on the periphery of large groups, where lytic viral activity also reduces local structural integrity, lysogens are predisposed to disperse and are over-represented in biofilms formed downstream of the original biofilm-phage system. Comparing our results with those for virulent phages reveals that the temperate phages possess previously unknown advantages for propagation in architecturally heterogeneous biofilm communities.

5.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333217

ABSTRACT

Bacteriophage lambda tunes its propensity to lysogenize based on the number of viral genome copies inside the infected cell. Viral self-counting is believed to serve as a way of inferring the abundance of available hosts in the environment. This interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). However, here we show this premise to be untrue. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, followed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of individual phage entries decrease with MOI. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage landing, evidenced by compromised membrane integrity and loss of membrane potential. The dependence of phage entry dynamics on the surrounding medium is found to result in a strong impact of environmental conditions on the infection outcome, while the protracted entry of co-infecting phages increases the cell-to-cell variability in infection outcome at a given MOI. Our findings demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.

6.
Nucleic Acids Res ; 51(13): 6944-6965, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246647

ABSTRACT

U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , RNA, Messenger/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosoma/genetics , RNA/genetics , RNA, Protozoan/genetics , RNA, Protozoan/metabolism
7.
Nucleic Acids Res ; 50(21): 12355-12368, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36477901

ABSTRACT

The action of Type II restriction-modification (RM) systems depends on restriction endonuclease (REase), which cleaves foreign DNA at specific sites, and methyltransferase (MTase), which protects host genome from restriction by methylating the same sites. We here show that protection from phage infection increases as the copy number of plasmids carrying the Type II RM Esp1396I system is increased. However, since increased plasmid copy number leads to both increased absolute intracellular RM enzyme levels and to a decreased MTase/REase ratio, it is impossible to determine which factor determines resistance/susceptibility to infection. By controlled expression of individual Esp1396I MTase or REase genes in cells carrying the Esp1396I system, we show that a shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from infection. Consistently, due to stochastic variation of MTase and REase amount in individual cells, bacterial cells that are productively infected by bacteriophage have significantly higher MTase to REase ratios than cells that ward off the infection. Our results suggest that cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.


Subject(s)
Bacteriophages , DNA Restriction Enzymes/genetics , Bacteriophages/genetics , Methyltransferases , DNA Restriction-Modification Enzymes/genetics , DNA
8.
Mol Microbiol ; 117(5): 1275-1290, 2022 05.
Article in English | MEDLINE | ID: mdl-35434837

ABSTRACT

F plasmids circulate widely among the Enterobacteriaceae through encoded type IV secretion systems (T4SSF s). Assembly of T4SSF s and associated F pili requires 10 VirB/VirD4-like Tra subunits and eight or more F-specific subunits. Recently, we presented evidence using in situ cryoelectron tomography (cryoET) that T4SSF s undergo structural transitions when activated for pilus production, and that assembled pili are deposited onto alternative basal platforms at the cell surface. Here, we deleted eight conserved F-specific genes from the MOBF12C plasmid pED208 and quantitated effects on plasmid transfer, pilus production by fluorescence microscopy, and elaboration of T4SSF structures by in situ cryoET. Mutant phenotypes supported the assignment of F-specific subunits into three functional Classes: (i) TraF, TraH, and TraW are required for all T4SSF -associated activities, (ii) TraU, TraN, and TrbC are nonessential but contribute significantly to distinct T4SSF functions, and (iii) TrbB is essential for F pilus production but not for plasmid transfer. Equivalent mutations in a phylogenetically distantly related MOB12A F plasmid conferred similar phenotypes and generally supported these Class assignments. We present a new structure-driven model in which F-specific subunits contribute to distinct steps of T4SSF assembly or activation to regulate DNA transfer and F pilus dynamics and deposition onto alternative platforms.


Subject(s)
Escherichia coli Proteins , F Factor , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Plasmids/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
9.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458408

ABSTRACT

Bacteriophage P1 is the premier transducing phage of E. coli. Despite its prominence in advancing E. coli genetics, modern molecular techniques have not been applied to thoroughly understand P1 structure. Here, we report the proteome of the P1 virion as determined by liquid chromatography tandem mass-spectrometry. Additionally, a library of single-gene knockouts identified the following five previously unknown essential genes: pmgA, pmgB, pmgC, pmgG, and pmgR. In addition, proteolytic processing of the major capsid protein is a known feature of P1 morphogenesis, and we identified the processing site by N-terminal sequencing to be between E120 and S121, producing a 448-residue, 49.3 kDa mature peptide. Furthermore, the P1 defense against restriction (Dar) system consists of six known proteins that are incorporated into the virion during morphogenesis. The largest of these, DarB, is a 250 kDa protein that is believed to translocate into the cell during infection. DarB deletions indicated the presence of an N-terminal packaging signal, and the N-terminal 30 residues of DarB are shown to be sufficient for directing a heterologous reporter protein to the capsid. Taken together, the data expand on essential structural P1 proteins as well as introduces P1 as a nanomachine for cellular delivery.


Subject(s)
Bacteriophage P1 , Escherichia coli , Bacteriophage P1/genetics , Bacteriophage P1/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
10.
mBio ; 12(5): e0101321, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34517752

ABSTRACT

Phage P1 is a temperate phage which makes the lytic or lysogenic decision upon infecting bacteria. During the lytic cycle, progeny phages are produced and the cell lyses, and in the lysogenic cycle, P1 DNA exists as a low-copy-number plasmid and replicates autonomously. Previous studies at the bulk level showed that P1 lysogenization was independent of multiplicity of infection (MOI; the number of phages infecting a cell), whereas lysogenization probability of the paradigmatic phage λ increases with MOI. However, the mechanism underlying the P1 behavior is unclear. In this work, using a fluorescent reporter system, we demonstrated this P1 MOI-independent lysogenic response at the single-cell level. We further observed that the activity of the major repressor of lytic functions (C1) is a determining factor for the final cell fate. Specifically, the repression activity of P1, which arises from a combination of C1, the anti-repressor Coi, and the corepressor Lxc, remains constant for different MOI, which results in the MOI-independent lysogenic response. Additionally, by increasing the distance between phages that infect a single cell, we were able to engineer a λ-like, MOI-dependent lysogenization upon P1 infection. This suggests that the large separation of coinfecting phages attenuates the effective communication between them, allowing them to make decisions independently of each other. Our work establishes a highly quantitative framework to describe P1 lysogeny establishment. This system plays an important role in disseminating antibiotic resistance by P1-like plasmids and provides an alternative to the lifestyle of phage λ. IMPORTANCE Phage P1 has been shown potentially to play an important role in disseminating antibiotic resistance among bacteria during lysogenization, as evidenced by the prevalence of P1 phage-like elements in animal and human pathogens. In contrast to phage λ, a cell fate decision-making paradigm, P1 lysogenization was shown to be independent of MOI. In this work, we built a simple genetic model to elucidate this MOI independency based on the gene-regulatory circuitry of P1. We also proposed that the effective communication between coinfecting phages contributes to the lysis-lysogeny decision-making of P1 and highlighted the significance of spatial organization in the process of cell fate determination in a single-cell environment. Finally, our work provides new insights into different strategies acquired by viruses to interact with their bacterial hosts in different scenarios for their optimal survival.


Subject(s)
Bacteria/virology , Bacteriophage P1/genetics , Bacteriophage P1/metabolism , Gene Expression Regulation, Viral , Lysogeny/genetics , Microbial Interactions , Viral Regulatory and Accessory Proteins/genetics , Bacteriophage P1/chemistry , Lysogeny/physiology , Viral Regulatory and Accessory Proteins/metabolism
11.
Annu Rev Biophys ; 50: 117-134, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33957052

ABSTRACT

Cellular decision making is the process whereby cells choose one developmental pathway from multiple possible ones, either spontaneously or due to environmental stimuli. Examples in various cell types suggest an almost inexhaustible plethora of underlying molecular mechanisms. In general, cellular decisions rely on the gene regulatory network, which integrates external signals to drive cell fate choice. The search for general principles of such a process benefits from appropriate biological model systems that reveal how and why certain gene regulatory mechanisms drive specific cellular decisions according to ecological context and evolutionary outcomes. In this article, we review the historical and ongoing development of the phage lambda lysis-lysogeny decision as a model system to investigate all aspects of cellular decision making. The unique generality, simplicity, and richness of phage lambda decision making render it a constant source ofmathematical modeling-aided inspiration across all of biology. We discuss the origins and progress of quantitative phage lambda modeling from the 1950s until today, as well as its possible future directions. We provide examples of how modeling enabled methods and theory development, leading to new biological insights by revealing gaps in the theory and pinpointing areas requiring further experimental investigation. Overall, we highlight the utility of theoretical approaches both as predictive tools, to forecast the outcome of novel experiments, and as explanatory tools, to elucidate the natural processes underlying experimental data.


Subject(s)
Bacteriophage lambda/genetics , Bacteriophage lambda/physiology , Models, Biological , Gene Regulatory Networks , Lysogeny
12.
Mol Microbiol ; 115(3): 436-452, 2021 03.
Article in English | MEDLINE | ID: mdl-33326642

ABSTRACT

Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.


Subject(s)
Conjugation, Genetic , Fimbriae, Bacterial/physiology , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/physiology , Protein Translocation Systems/metabolism , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/physiology , Agrobacterium tumefaciens/chemistry , Agrobacterium tumefaciens/physiology , Amino Acid Motifs , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Cryoelectron Microscopy , Gram-Negative Bacteria/ultrastructure , Gram-Negative Bacterial Infections/microbiology , Helicobacter pylori/chemistry , Helicobacter pylori/physiology , Humans , Legionella pneumophila/chemistry , Legionella pneumophila/physiology , Molecular Docking Simulation , Protein Translocation Systems/chemistry , Protein Translocation Systems/ultrastructure , Structure-Activity Relationship , Type IV Secretion Systems/ultrastructure
13.
Proc Natl Acad Sci U S A ; 117(41): 25751-25758, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989140

ABSTRACT

Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.


Subject(s)
Escherichia coli/virology , Fimbriae, Bacterial/virology , Levivirus/physiology , RNA Viruses/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Levivirus/genetics , RNA Viruses/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
14.
Nat Commun ; 11(1): 3813, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732913

ABSTRACT

Spatial organization of biological processes allows for variability in molecular outcomes and coordinated development. Here, we investigate how organization underpins phage lambda development and decision-making by characterizing viral components and processes in subcellular space. We use live-cell and in situ fluorescence imaging at the single-molecule level to examine lambda DNA replication, transcription, virion assembly, and resource recruitment in single-cell infections, uniting key processes of the infection cycle into a coherent model of phage development encompassing space and time. We find that different viral DNAs establish separate subcellular compartments within cells, which sustains heterogeneous viral development in single cells. These individual phage compartments are physically separated by the E. coli nucleoid. Our results provide mechanistic details describing how separate viruses develop heterogeneously to resemble single-cell phenotypes.


Subject(s)
Bacteriophage lambda/genetics , DNA Replication/genetics , Escherichia coli/virology , Virus Assembly/genetics , Bacteriophage lambda/growth & development , DNA, Viral/biosynthesis , DNA, Viral/genetics , Escherichia coli/genetics , Lysogeny/genetics , Transcription, Genetic/genetics
15.
Virology ; 542: 1-7, 2020 03.
Article in English | MEDLINE | ID: mdl-31957661

ABSTRACT

To begin its infection, a bacteriophage first needs to adsorb to cells. The adsorption site on the cell surface may influence viral DNA injection, gene expression and cell-fate development. Here, we study the early steps of the infection cycle of coliphage P1, focusing on their correlation with spatial locations at the single-cell level. By fluorescently labeling P1 virions, we found that P1 shows no spatial preference on cell surface adsorption. In addition, live-cell phage DNA imaging revealed that adsorption sites do not affect the success rate for P1 in injecting its DNA into the cell. Furthermore, the lysis-lysogeny decision of P1 does not depend on the adsorption site, based on fluorescence reporters for the lytic and lysogenic pathways. These findings highlight the different infection strategies used by the two paradigmatic coliphages differ from those found in the paradigmatic phage lambda, highlighting that different infection strategies are used by phages.


Subject(s)
Bacteriophage P1/pathogenicity , Escherichia coli/virology , Adsorption , Bacteriophage P1/genetics , Bacteriophage P1/physiology , Capsid Proteins/genetics , Capsid Proteins/physiology , Cell Membrane/virology , Cytoplasm/virology , DNA, Viral/genetics , DNA, Viral/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysogeny , Microscopy, Fluorescence , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Cell Analysis , Virus Attachment
16.
Nucleic Acids Res ; 47(1): 253-265, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30418590

ABSTRACT

Prokaryotes evolved numerous systems that defend against predation by bacteriophages. In addition to well-known restriction-modification and CRISPR-Cas immunity systems, many poorly characterized systems exist. One class of such systems, named BREX, consists of a putative phosphatase, a methyltransferase and four other proteins. A Bacillus cereus BREX system provides resistance to several unrelated phages and leads to modification of specific motif in host DNA. Here, we study the action of BREX system from a natural Escherichia coli isolate. We show that while it makes cells resistant to phage λ infection, induction of λ prophage from cells carrying BREX leads to production of viruses that overcome the defense. The induced phage DNA contains a methylated adenine residue in a specific motif. The same modification is found in the genome of BREX-carrying cells. The results establish, for the first time, that immunity to BREX system defense is provided by an epigenetic modification.


Subject(s)
Bacteriophage lambda/genetics , DNA Methylation/genetics , Escherichia coli/genetics , Nucleotide Motifs/genetics , Adenine/metabolism , Bacillus cereus/genetics , CRISPR-Cas Systems/genetics , Methyltransferases/genetics , Phosphoric Monoester Hydrolases/genetics
17.
Trends Microbiol ; 27(1): 3-4, 2019 01.
Article in English | MEDLINE | ID: mdl-30502931

ABSTRACT

There are many strategies by which cell fates are decided. In one intriguing case, viruses communicate via the quorum-sensing-like 'arbitrium' system to bias infection outcomes. Through elucidating the detailed molecular mechanisms of such strategies, we can better understand viral propagation and offer insights into the treatment of viral diseases.


Subject(s)
Bacteriophages , Lysogeny , Virus Latency
18.
J Biol Chem ; 294(10): 3343-3349, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30242122

ABSTRACT

Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.


Subject(s)
Bacteriophage lambda/physiology , DNA, Viral/metabolism , Lysogeny/physiology , RNA, Viral/metabolism , DNA, Viral/genetics , RNA, Viral/genetics
19.
Virology ; 527: 57-63, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30463036

ABSTRACT

Bacteriophage λ has served as an important model for molecular biology and different cellular processes over the past few decades. In 1992, the phage strain used in most laboratories around the world, thought of as λ wild type, was discovered to carry a mutation in the stf gene which encodes four side tail fibers. Up to now, the role of the side tail fibers during the infection cycle, especially at the single-cell level, remains largely unknown. Here we utilized fluorescent reporter systems to characterize the effect of the side tail fibers on phage infection. We found that the side tail fibers interfere with phage DNA ejection process, most likely through the binding with their receptors, OmpC, leading to a more frequent failed infection. However, the side tail fibers do not seem to affect the lysis-lysogeny decision-making or lysis time.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacteriophage lambda/physiology , Escherichia coli/virology , Porins/metabolism , Receptors, Virus/metabolism , Viral Tail Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacteriophage lambda/genetics , Escherichia coli/metabolism , Microscopy, Fluorescence , Mutation , Porins/genetics , Receptors, Virus/genetics , Single-Cell Analysis , Viral Tail Proteins/genetics , Virus Attachment , Virus Internalization
20.
iScience ; 6: 1-12, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30240603

ABSTRACT

Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.

SELECTION OF CITATIONS
SEARCH DETAIL
...