Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095694

ABSTRACT

BACKGROUND: Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS: This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS: A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS: Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.


Subject(s)
Anthozoa , Disease Resistance , Vibrio , Anthozoa/microbiology , Anthozoa/genetics , Anthozoa/immunology , Animals , Vibrio/genetics , Disease Resistance/genetics , Symbiosis/genetics , Microbiota/genetics , Coral Reefs , High-Throughput Nucleotide Sequencing
2.
Mar Environ Res ; 196: 106403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335857

ABSTRACT

White Plague Type II (WPL II) is a disease increasingly affecting scleractinian coral species and progresses rapidly. However, the etiological pathogen and remedy remain elusive. In this study, transmission experiments demonstrated that Aureimonas altamirensis and Aurantimonas coralicida, representing the WPL II pathogens, could infect Pocillopora damicorni. The infection produced selected pathological symptoms, including bleaching, tissue loss, and decolorization. Furthermore, ammonia degradation significantly reduced the severity of infection by these pathogens, indicating that ammonia may be a virulence factor for WPL II. Coral microbiome analysis suggested that ammonia degradation mediates the anti-white plague effect by maintaining the density of Symbiodiniaceae and stabilizing the core and symbiotic bacteria. Aureimonas altamirensis and Aurantimonas coralicida have been shown to cause diseases of P. damicornis, with ammonia acting as a virulence factor, and ammoniac degradation may be a promising and innovative approach to mitigate coral mortality suffering from increasing diseases.


Subject(s)
Alphaproteobacteria , Anthozoa , Animals , Ammonia/metabolism , Anthozoa/metabolism , Coral Reefs , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL