Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 103(1): e14414, 2024 01.
Article in English | MEDLINE | ID: mdl-38230796

ABSTRACT

Among all types of cancers, non-small cell lung cancer (NSCLC) exhibits the highest mortality rate with a five-year survival rate below 17% for patients. The Buzhong Yiqi decoction (BZYQD), traditional Chinese medicine (TCM) formula, has been reported to exhibit clinical efficacy in the treatment of NSCLC. Nevertheless, the underlying molecular mechanism remains elusive. This study aimed to assess the mechanistic actions exerted by BZYQD against NSCLC using network pharmacological analysis and experimental validation. The public databases were searched for active compounds in BZYQD, their potential targets, and NSCLC-related targets. The protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the core targets and signaling pathways of BZYQD against NSCLC. After screening, this study validated the results of predictions through in vitro experiments and public databases. We found 192 common targets between BZYQD and NSCLC. KEGG analysis showed that the anti-NSCLC effects of BZYQD were mediated through the PI3K-AKT signaling pathway. The results of in vitro experiment indicated that BZYQD could inhibit cell viability and proliferation of A549 and H1299 cells apart from inducing cell apoptosis. In addition, western blot results substantiated that BZYQD could treat NSCLC by inhibiting the activation of the PI3K-AKT signaling pathway. The current study investigated the pharmacological mechanism of BZYQD against NSCLC via network pharmacology and in vitro analyses. Overall, the results revealed that BZYQD could be a promising therapeutic agent for the treatment of NSCLC in the future. Still, more experimental investigations are needed to confirm the applicability of BZYQD for clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Lung Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation
2.
Drug Dev Res ; 83(6): 1434-1454, 2022 09.
Article in English | MEDLINE | ID: mdl-35841121

ABSTRACT

Involved in mediating the folding and maturation of more than 300 client proteins, many of which are oncoproteins, Hsp90 has emerged as a promising drug target for cancer therapy. In particular, inhibiting Hsp90 plays a vital role in the treatment of non-small cell lung cancer. Owing to undesirable outcomes of Hsp90 inhibitors in clinical trials, a series of matrinic acid compounds bearing 2-anilinothiazole moiety were designed based on the structural features allocation shared among Hsp90 inhibitors within the ATP-binding pocket. Most of the compounds showed potent anticancer activities validated by MTT assay. Among them, the most potent compound C4 (IC50 < 10 µM against four cell lines) was chosen for further mechanism study. Notably, C4 showed a better safety profile than 17AAG with a higher SI value. Thermal shift assay data indicated C4 exhibited a strong binding affinity with Hsp90 (-18.85 ± 0.56°C) comparable to radicicol. Mechanism studies verified that C4 significantly inhibited proliferation and migration activities of A549 cells. Besides, C4 can induce a prolonged G1-phase and cell apoptosis. Western blot analysis results indicated C4 could moderately suppress Hsp90 and upregulate Hsp70 expression. Furthermore, the downregulated trend of the client proteins of Hsp90, such as ß-Catenin and Bcl-2, were consistent with the cellular effect of C4, suggesting that C4 could exert anticancer activity via targeting Hsp90. In the xenograft model in vivo, C4 effectively inhibited lung cancer growth without obvious side effects. Collectively, C4 could be a promising therapeutic agent for lung cancer and the novel scaffold provided new insights into the design of Hsp90 inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Lung Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...