Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Int J Biol Macromol ; 280(Pt 2): 135743, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39304038

ABSTRACT

Photoaging induced by ultraviolet (UV) results in oxidative stress and inflammation. Noble metal nanozymes have strong antioxidant and anti-inflammatory capacity, which are expected to eliminate the excessive reactive oxygen species (ROS) and inflammatory factors in the photoaged skin. Hence, we have synthesized ultrasmall platinum nanoparticles coated with polyvinylpyrrolidone (Pt NPs) with a diameter of nearly 5 nm for photoaging treatment. Thanks to multi-enzymatic capacities (catalase, peroxidase, and superoxide dismutase) of Pt NPs, they can effectively protect fibroblasts from UV-induced ROS attack, relieve fibroblasts from UV-induced cell cycle arrest, downregulate matrix metalloproteinases (MMPs) to regenerate type I collagen, and inhibit M1 macrophage polarization to decrease the expression of inflammatory factors. For photoaged mice treatment, we employ the concept of routine spray skincare and encapsulate Pt NPs solution in a spray bottle. In combination with roller needle, following Pt NPs nano-enzymatic spray given, UV-induced photoaged mice display reduced wrinkle formation in the collagen-depleted dermal tissue of mice and more youthful performance in both appearance and organizational structure. Consequently, multi-enzymatic functions of Pt NPs nano-spray offers a promising avenue for anti-photoaging therapy, providing potential benefits in both preventative and restorative skincare applications.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39199249

ABSTRACT

Selenium (Se) is an essential trace element known for its significant role in maintaining human health and mitigating disease progression. Selenium and its compounds exhibit high selective cytotoxicity against tumor cells. However, their anti-cervical cancer (CC) effects and underlying mechanisms have not been fully explored. This study found that sodium selenite (SS) inhibits the viability of HeLa and SiHa cells in a dose- and time-dependent manner. Intraperitoneal injection of 3 and 6 mg/kg SS for 14 days in female nude mice significantly inhibited the growth of HeLa cell xenografts without evident hepatotoxicity or nephrotoxicity. RNA sequencing results indicated that the AMP-activated protein kinase (AMPK), Forkhead box protein O (FOXO), and apoptosis signaling pathways are key regulatory pathways in SS's anti-CC effects, and SS's inhibition of HeLa cell proliferation may be related to autophagy and ROS-induced apoptosis. Further research has revealed that SS induces cell autophagy and apoptosis through the AMPK/mTOR/FOXO3a pathway, characterized by the upregulation of p-AMPK/AMPK, FOXO3a, LC3-II, cleaved-caspase3, and cleaved-PARP and the downregulation of p-mTOR/mTOR and p62. Additionally, SS impaired mitochondrial function, including decreased mitochondrial membrane potential, mitochondrial Ca2+ overload, and accumulation of mitochondrial reactive oxygen species (mtROS). Pretreatment with Mitoquinone mesylate (Mito Q) and compound C partially reversed SS-induced apoptosis, autophagy, and proliferation inhibition. Pretreatment with 3-methyladenine (3-MA) enhances SS-induced apoptosis and proliferation inhibition in HeLa cells but reverses these effects in SiHa cells. In summary, SS induces apoptosis, autophagy, and proliferation inhibition in HeLa and SiHa cells through the activation of the AMPK/mTOR/FOXO3a signaling pathway via mtROS. Autophagy activation may be a major risk factor for SS-induced apoptosis in SiHa cells but can protect HeLa cells from SS-induced apoptosis. These findings provide new evidence for understanding the molecular mechanisms underlying SS in potential new drug development for CC.

3.
Eur J Gastroenterol Hepatol ; 36(10): 1202-1208, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38973513

ABSTRACT

BACKGROUND: Patients with cirrhosis commonly undergo endoscopic cyanoacrylate injection for gastric and esophageal variceal bleeding. However, postoperative infections can increase the risk of rebleeding and mortality. AIM: This study aimed to determine the risk of postoperative infections and its associated factors following cyanoacrylate injection treatment in these patients. METHODS: A retrospective analysis was conducted on 57 patients treated with ligation (ligation group), 66 patients treated with cyanoacrylate injection (injection group), and 91 patients treated with conservative treatment (control group) at the Nanchong Central Hospital. RESULTS: The rate of postoperative infection was similar among the cyanoacrylate, ligation, and conservative treatment groups, with no significant statistical difference observed ( P  = 0.97). Multivariate analysis identified postoperative Child-Pugh score and renal insufficiency as two independent risk factors for postoperative infection. The rebleeding rate in the injection group was significantly lower than in the other groups ( P  = 0.01). Mortality was significantly higher in the control group compared with the ligation and injection groups ( P  = 0.01). CONCLUSION: Cyanoacrylate combined with lauromacrogol injection did not significantly increase the risk of infection compared with ligation and conservative treatments, and it was more effective in reducing the risk of rebleeding. This method is safe, effective, and holds clinical value for broader application.


Subject(s)
Cyanoacrylates , Esophageal and Gastric Varices , Gastrointestinal Hemorrhage , Recurrence , Humans , Esophageal and Gastric Varices/etiology , Esophageal and Gastric Varices/therapy , Male , Female , Retrospective Studies , Cyanoacrylates/adverse effects , Cyanoacrylates/administration & dosage , Cyanoacrylates/therapeutic use , Middle Aged , Risk Factors , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/therapy , Ligation , Aged , Treatment Outcome , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/adverse effects , Adult , Surgical Wound Infection/etiology , Liver Cirrhosis/complications
5.
Photodiagnosis Photodyn Ther ; 49: 104290, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067671

ABSTRACT

BACKGROUND: Melanoma is an aggressive cancer with poor response to traditional therapies. A combination of photothermal therapy and topical immunotherapy may enhance elimination of melanoma.. MATERIALS AND METHODS: C57BL/6 mice with early stage and metastatic melanoma were treated with laser immunotherapy (LIT), combining near-infrared laser-based photothermal therapy (PTT) and topical imiquimod (IMQ)-based immunotherapy. The volume of primary and abscopal melanoma, animal survival, tissue temperature, transcriptome, and immune cell response were investigated to evaluate the effect of LIT. RESULTS: LIT could eliminate primary tumors, inhibite abscopal tumors, and prolong animal survival. The tumor tissues were selectively destroyed under a photothermal gradient between 38.2 ± 3.7 °C and 73.0 ± 2.3 °C. Gene expression analysis showed a significant increase in the expression of damage associated molecular patterns. Additionally, the population of mature dendritic cells, CD4+ T cells, and CD8+ T cells were increased, while myeloid-derived suppressor cells were downregulated after LIT. CONCLUSION: The study showed that LIT inhibited the growth of both primary and abscopal melanoma by activating systemic antitumor immune responses and reversing the immunosuppressive tumor microenvironment, making LIT a potential method for advanced melanoma treatment.

6.
Phytomedicine ; 131: 155752, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833947

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE: This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS: Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS: In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION: Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Glutathione Transferase , Skin Neoplasms , Ferroptosis/drug effects , Animals , Skin Neoplasms/drug therapy , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Mice , Glutathione Transferase/metabolism , Peroxiredoxins/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects , Molecular Docking Simulation , Mice, Nude , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Keratinocytes/drug effects , Chalcones
7.
Photodiagnosis Photodyn Ther ; 48: 104238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848883

ABSTRACT

BACKGROUND: Acne vulgaris is a species-specific human disease. To date, there has been no established human sebocyte cell line of Asian origin. Our previous study has demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of acne vulgaris, primarily attributed to its cytotoxic properties; however, its regulatory mechanism remains largely unknown. OBJECTIVES: To establish an immortalized human sebocyte cell line derived from Chinese population and investigate the underlying mechanism of ALA-PDT. METHODS: Human primary sebocytes were transfected with the human tert gene (h­tert). The biological characteristics, including cell proliferation, cell markers, and sebum secretion function, were compared between primary sebocytes and the immortalized sebocytes (XL-i-20). Stimulations such as ALA-PDT, were applied respectively to both primary sebocytes and XL-i-20 cells to assess changes in their cellular functions. The transcriptome differences between primary sebocytes and XL-i-20 sebocytes were investigated using RNA-seq analysis. The XL-i-20 cell line was used to establish a sebaceous gland (SG) organoid culture, serving as a representative model of SG for the investigation of ALA-PDT. RESULTS: The h­tert immortalized sebocyte cell line exhibited the ability to be consecutively cultured for more than fifty passages. Both primary and immortalized cells expressed sebocyte markers such as epithelial membrane antigens (EMA, or MUC-1), Cytokeratin 7 (CK7) and adipose differentiation-related protein associated antigens (ADRP), and maintained sebum secretion function. The proliferative capacity of XL-i-20 was found to be significantly higher than that of primary sebocytes. The responses of XL-i-20 to ALA-PDT were indistinguishable from those elicited by primary sebocytes. Cell viability and sebum secretion were decreased after ALA-PDT in both two cell lines, and lipid-related proteins (SREBP-1/PPARγ) were down-regulated. The transcriptome data consistently demonstrated upregulation of genes related to inflammatory responses and downregulation of genes involved in lipid metabolism in both cell types following PDT. The analysis of common differential genes of primary sebocytes and XL-i-20 sebocytes post ALA-PDT showed that TNF signaling pathways, MAPK signaling pathways and JAK-STAT signaling pathways were activated. The SG organoids were spherical, which expressed markers of FANS and PLET1. Ki-67 was down-regulated after ALA-PDT. CONCLUSIONS: We have developed an h­tert immortalized sebocyte cell line from an Asian population. The cell line, XL-i-20, maintains the essential characteristics of its parent primary sebocytes. Moreover, XL-i-20 sebocyte exhibited a significant respond to ALA-PDT, demonstrating comparable phenotypic and molecular changes to primary sebocytes. Therefore, XL-i-20 and its derived SG organoid serve as appropriate in vitro models for investigating the efficacy and mechanisms of ALA-PDT in SG-related diseases.


Subject(s)
Aminolevulinic Acid , Cell Proliferation , Photochemotherapy , Photosensitizing Agents , Sebaceous Glands , Humans , Photochemotherapy/methods , Sebaceous Glands/drug effects , Sebaceous Glands/cytology , Aminolevulinic Acid/pharmacology , Photosensitizing Agents/pharmacology , Cell Proliferation/drug effects , Cell Line , Telomerase , Acne Vulgaris/drug therapy , Sebum/metabolism
8.
Heliyon ; 10(7): e28942, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601678

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death modality, which has showed great potential in anticancer treatment. Photodynamic therapy (PDT) is widely used in clinic as an anticancer therapy. PDT combined with ferroptosis-promoting therapy has been found to be a promising strategy to improve anti-cancer therapy efficacy. Fenton reaction in ferroptosis can provide oxygen for PDT, and PDT can produce reactive oxygen species for Fenton reaction to enhance ferroptosis. In this review, we briefly present the importance of ferroptosis in anticancer treatment, mechanism of ferroptosis, researches on PDT induced ferroptosis, and the mechanism of the synergistic effect of PDT and ferroptosis on cancer killing.

10.
Int Immunopharmacol ; 129: 111636, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38364746

ABSTRACT

Rosacea is a long-term inflammatory skin disease associated with the dysfunction of vascular and immunological systems. Treatment options for rosacea are difficult to implement. Oroxylin A(OA), a traditional Chinese medicine, has anti-inflammation effects in a variety of inflammatory diseases. However, it is not known that whether OA exerts protective effects against LL-37-induced rosacea. In this study, bioinformatics analyses showed that the mechanisms of rosacea and the pharmacological targets of OA were highly overlapped. Subsequently, it was shown that the administration of OA resulted in a notable amelioration of rosacea-like skin lesions, as evidenced by a reduction in immune cell infiltration, modulation of cytokine production, and inhibition of angiogenesis. Plus, it was shown that OA effectively suppressed the generation of ROS generated by LL-37, as well as the subsequent activation of NF-κB signaling pathway. To explore further, we found that OA inhibited LL-37-induced ROS production via SIRT3-SOD2 signaling pathway in keratinocytes. Based on the aforementioned evidence, it can be inferred that OA exhibits a mitigating effect on the inflammatory response in rosacea by modulating the SIRT3-SOD2-NF-κB signaling pathway.


Subject(s)
Dermatitis , Flavonoids , Rosacea , Sirtuin 3 , Humans , NF-kappa B/metabolism , Sirtuin 3/metabolism , Reactive Oxygen Species/metabolism , Rosacea/drug therapy , Signal Transduction , Inflammation/drug therapy
11.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119603, 2024 01.
Article in English | MEDLINE | ID: mdl-37805058

ABSTRACT

Modified 5-aminolevulinic acid photodynamic therapy (M-PDT) is a novel therapeutic modality for cutaneous squamous cell carcinoma (cSCC) that is reported to be effective and well tolerated. However, the mechanisms underlying its antitumor effects are not fully understood. In this research, we investigated the effects of M-PDT on pyroptosis, a form of programmed cell death characterized by cell swelling, ruptures of cell membrane, and inflammatory cytokine release, in two human cSCC cell lines, SCL-1 and HSC-5. We found that M-PDT triggered pyroptosis in a dose-dependent manner, as evidenced by increased lactate dehydrogenase release, propidium iodide staining, and expression of pyroptosis-related proteins, such as NLR family pyrin domain containing 3 (NLRP3), N-terminal of gasdermin D (N-GSDMD), cleaved caspase-1, and mature interleukin 1 beta (IL-1B) in both cell lines. This process was inhibited by treatment with MCC950, an NLRP3-specific inhibitor, suggesting the involvement of the NLRP3 inflammasome in M-PDT-induced pyroptosis. We also demonstrated that M-PDT activated c-Jun N-terminal kinase (JNK) signaling, which is required for pyroptosis induction, as treatment with SP600125, a JNK inhibitor, suppressed the expression of pyroptosis-related proteins after M-PDT. JNK activation enhanced M-PDT-induced pyroptosis, highlighting the significance of the JNK pathway in M-PDT. Moreover, M-PDT increased intracellular reactive oxygen species (ROS) levels, which are responsible for JNK activation and pyroptosis induction. In summary, our results revealed that M-PDT triggers pyroptosis through ROS-mediated JNK activation and subsequent NLRP3 inflammasome activation in cSCC cells, providing a better understanding of the molecular mechanism of M-PDT and promoting its clinical application.


Subject(s)
Carcinoma, Squamous Cell , Photochemotherapy , Skin Neoplasms , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , Pyroptosis , Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy
12.
Curr Treat Options Oncol ; 24(12): 1978-1993, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38095778

ABSTRACT

OPINION STATEMENT: Non-melanoma skin cancer (NMSC) is a globally prevalent skin disease, with basal cell carcinoma and squamous cell carcinoma accounting for 99% of NMSC cases. While surgical excision is the most common approach, numerous non-surgical therapies have rapidly advanced in recent years. In cases of low-risk NMSC, alongside surgical excision, priority should be given to physical therapy and photodynamic therapy. Physical therapy modalities, exemplified by electrodessication and curettage, emerge as safe and efficacious alternatives. In juxtaposition, photodynamic therapy, albeit relatively more costly, assumes preference for patients exhibiting heightened cosmetic concerns owing to the scarring risks inherent to physical therapy and surgical excision. Notably, the combination of curettage and photodynamic therapy has exhibited remarkable efficacy in the treatment of nodular basal cell carcinoma. Additionally, for elderly patients who may be intolerant to stimulation, modified photodynamic therapy offers an almost painless option. When surgery is unavoidable, photodynamic therapy can be a valuable adjunct, allowing for a more conservative surgical approach, either before or after the procedure. Radiotherapy holds a prominent role in comprehensive treatment strategies, especially for patients ineligible for surgical intervention or those with lesions precluding further surgical measures. In cases of NMSC exhibiting perineural invasion or lymphovascular involvement, adjunctive radiotherapy is advised; however, potential adverse effects necessitate careful consideration. For advanced NMSC cases where surgery and physical therapy fall short, immunotherapy provide viable solutions. Systemic therapy employing Hedgehog pathway inhibitors can be considered for patients with distant metastatic basal cell carcinoma, despite its low incidence, or individuals with locally advanced lesions who are not surgical candidates, or those encountering recurrences after resection and radiotherapy. However, close monitoring of disease progression and adverse reactions is crucial. In this evolving landscape of NMSC treatment, personalized and multidisciplinary approaches are key, ensuring optimal outcomes while prioritizing patient safety and satisfaction.


Subject(s)
Antineoplastic Agents , Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Skin Neoplasms , Humans , Aged , Hedgehog Proteins , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Carcinoma, Basal Cell/therapy , Carcinoma, Basal Cell/drug therapy , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/drug therapy , Antineoplastic Agents/therapeutic use
15.
Skin Res Technol ; 29(10): e13497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881057

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS: In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS: The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION: Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.


Subject(s)
Paget Disease, Extramammary , Skin Neoplasms , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Methylation , Skin Neoplasms/pathology , Epigenesis, Genetic/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
16.
Photodiagnosis Photodyn Ther ; 44: 103801, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717674

ABSTRACT

BACKGROUND: The treatment of deep-invasive cutaneous squamous cell carcinoma (cSCC) is difficult. Sonodynamic therapy (SDT) has showed advantages in large penetration depth, small trauma, good repeatability, high targeting selectivity and effective protection for intact structure and function of tissues and organs. OBJECTIVE: To study the efficacy and safety of 5-aminolevulinic acid SDT (ALA-SDT) in the treatment of cSCC. METHODS: The absorption and transformation of ALA after co-incubation with cSCC were detected by UV-Vis and fluorescence absorption. The production of reactive oxygen species (ROS) when protoporphyrin IX (PpIX) excited with ultrasound was detected by ROS detection probe. Cytotoxicity of ALA-SDT to cSCC was detected with cytotoxicity indicators. The tumor volume changes and tumor weight of mice after ALA-SDT were detected. The effects of ALA-SDT on the growth of mice were evaluated through the changes in body weight of mice. Biosafety of treatment was further evaluated by histopathology to determine whether the tissues and organs of mice were affected after ALA-SDT. RESULTS: ALA can be absorbed and converted into PpIX when incubated with cSCC cells and produces ROS with ultrasound irradiation. ALA-SDT showed a significant cytotoxicity on cSCC cells. With one session of ALA-SDT in vivo, tumor growth was slowed but not stopped and would proceed once treatment was ended. ALA-SDT had no significant effect on body weight changes and major tissues and organs of the mice. CONCLUSION: ALA-SDT could safely and reduce cSCC cells growth both in vitro and in vivo.


Subject(s)
Carcinoma, Squamous Cell , Photochemotherapy , Skin Neoplasms , Ultrasonic Therapy , Mice , Animals , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Reactive Oxygen Species , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Body Weight , Cell Line, Tumor
17.
Biomedicines ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37626650

ABSTRACT

Rosacea is a chronic inflammatory skin disease characterized by recurrent erythema, flushing, telangiectasia, papules, pustules, and phymatous changes in the central area of the face. Patients with this condition often experience a significant negative impact on their quality of life, self-esteem, and overall well-being. Despite its prevalence, the pathogenesis of rosacea is not yet fully understood. Recent research advances are reshaping our understanding of the underlying mechanisms of rosacea, and treatment options based on the pathophysiological perspective hold promise to improve patient outcomes and reduce incidence. In this comprehensive review, we investigate the pathogenesis of rosacea in depth, with a focus on emerging and novel mechanisms, and provide an up-to-date overview of therapeutic strategies that target the diverse pathogenic mechanisms of rosacea. Lastly, we discuss potential future research directions aimed at enhancing our understanding of the condition and developing effective treatments.

19.
Front Immunol ; 14: 1183709, 2023.
Article in English | MEDLINE | ID: mdl-37404811

ABSTRACT

Background: The immune microenvironment plays a critical role in maintaining skin homeostasis, which is closely related to the dysfunction in photoaged skin such as autoimmunity and tumorigenesis. Several recent studies have demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in alleviating photoaging and skin cancer. However, the underlying immune mechanisms and the immune microenvironment change by ALA-PDT remain largely unknown. Methods: To illustrate the effects of ALA-PDT on immune microenvironment in photoaged skin, single cell RNA sequencing (scRNA-seq) analysis of photoaged skin on the extensor side of the human forearm before and after ALA-PDT was performed. R-packages of Seurat, clusterProfiler, Monocle, CellChat were used for cell clustering, differentially expressed genes analysis, functional annotation, pseudotime analysis and cell-cell communication analysis. The gene sets related to specific functions were extracted from the MSigDB database, which were used to score the functions of immune cells in different states. We also compared our result with published scRNA-seq data of photoaged skin of the eyelids. Results: The increase score of cellular senescence, hypoxia and reactive oxygen species pathway in immune cells and the decrease of immune receptor activity function and proportion of naive T cells were found in skin photoaging. Moreover, the function of T cell ribosomal synthesis was also impaired or down regulated and function of G2M checkpoint was up regulated. However, ALA-PDT showed promising results in reversing these effects, as it improved the above functions of T cells. The ratio of M1/M2 and percentage of Langerhans cells also decreased with photoaging and increased after ALA-PDT. Additionally, ALA-PDT restored the antigen presentation and migration function of dendritic cells and enhanced cell-cell communication among immune cells. These effects were observed to last for 6 months. Conclusion: ALA-PDT has potential to rejuvenate immune cells, partially reversed immunosenescence and improved the immunosuppressive state, ultimately remodelling the immune microenvironment in photoaged skin. These results provide an important immunological basis for further exploring strategies to reverse skin photoaging, chronological aging and potentially systemic aging.


Subject(s)
Photochemotherapy , Skin Neoplasms , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Skin/metabolism , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Skin Neoplasms/drug therapy , Tumor Microenvironment/genetics
20.
J Am Acad Dermatol ; 89(4): 711-718, 2023 10.
Article in English | MEDLINE | ID: mdl-37356626

ABSTRACT

BACKGROUND: 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) showed potential to treat rosacea according to recent studies; however, a lack of clinical evidence and unclear adverse effects limit its use. OBJECTIVE: To compare the effect of ALA-PDT vs minocycline on rosacea. METHODS: In this single-center, randomized, evaluator-blind, controlled study, patients with moderate-to-severe rosacea were allocated to receive 3 to 5 sessions of ALA-PDT or 8 weeks of 100 mg daily minocycline treatment, followed by a 24-week follow-up. RESULTS: Of all the 44 randomized patients, 41 received complete treatment (ALA-PDT: 20 and minocycline: 21 patients). At the end of treatment, ALA-PDT showed noninferior improvement of papulopustular lesions and Rosacea-specific Quality of Life compared with minocycline (median reduction of lesion count: 19 vs 22, median change of Rosacea-specific Quality of Life score: 0.48 vs 0.53). The Clinician's Erythema Assessment success of ALA-PDT was lower than that of minocycline's (35% vs 67%). Demodex density and relapse rate were comparable in both groups. Erythema, mild pain, and exudation were the most common adverse reactions of ALA-PDT. LIMITATIONS: Limited sample size restricted us from drawing further conclusions. CONCLUSION: As minocycline does, ALA-PDT can improve rosacea mainly in papulopustular lesions and patients' quality of life, indicating a new option for rosacea.


Subject(s)
Photochemotherapy , Rosacea , Humans , Aminolevulinic Acid/adverse effects , Minocycline/adverse effects , Quality of Life , Photochemotherapy/adverse effects , Rosacea/drug therapy , Treatment Outcome , Photosensitizing Agents/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL