Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Stem Cell Res ; 40: 101533, 2019 10.
Article in English | MEDLINE | ID: mdl-31450191

ABSTRACT

Rett syndrome (RTT) is a childhood neurodevelopmental disorder caused by mutations in MECP2. To study the molecular mechanisms underlying RTT, four sublines of H1 hESCs were generated, carrying a hemizygous knockout or mutant allele of MECP2. Exons 3 and 4 of MECP2 were targeted using the CRISPR/Cas9 nuclease system.


Subject(s)
Embryonic Stem Cells/cytology , Gene Editing , Methyl-CpG-Binding Protein 2/genetics , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Exons , Humans , Karyotype , Rett Syndrome/genetics , Rett Syndrome/pathology
3.
Cell Rep ; 26(9): 2494-2508.e7, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30811996

ABSTRACT

In Huntington disease (HD), the analysis of tissue-specific CAG repeat length effects has been challenging, given the difficulty in obtaining relevant patient tissues with a broad range of CAG repeat lengths. We used genome editing to generate an allelic panel of isogenic HD (IsoHD) human embryonic stem cell (hESC) lines carrying varying CAG repeat lengths in the first exon of HTT. Functional analyses in differentiated neural cells revealed CAG repeat length-related abnormalities in mitochondrial respiration and oxidative stress and enhanced susceptibility to DNA damage. To explore tissue-specific effects in HD, we differentiated the IsoHD panel into neural progenitor cells, neurons, hepatocytes, and muscle cells. Transcriptomic and proteomic analyses of the resultant cell types identified CAG repeat length-dependent and cell-type-specific molecular phenotypes. We anticipate that the IsoHD panel and transcriptomic and proteomic data will serve as a versatile, open-access platform to dissect the molecular factors contributing to HD pathogenesis.


Subject(s)
Embryonic Stem Cells/cytology , Huntingtin Protein/genetics , Huntington Disease/genetics , Trinucleotide Repeats , Alleles , Cell Differentiation , Cell Line , Central Nervous System/cytology , DNA Damage , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Muscle Fibers, Skeletal/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Pluripotent Stem Cells/cytology , Proteomics
4.
Elife ; 72018 05 22.
Article in English | MEDLINE | ID: mdl-29784083

ABSTRACT

Calcium/calmodulin-dependent protein kinase II (CAMK2) plays fundamental roles in synaptic plasticity that underlies learning and memory. Here, we describe a new recessive neurodevelopmental syndrome with global developmental delay, seizures and intellectual disability. Using linkage analysis and exome sequencing, we found that this disease maps to chromosome 5q31.1-q34 and is caused by a biallelic germline mutation in CAMK2A. The missense mutation, p.His477Tyr is located in the CAMK2A association domain that is critical for its function and localization. Biochemically, the p.His477Tyr mutant is defective in self-oligomerization and unable to assemble into the multimeric holoenzyme.In vivo, CAMK2AH477Y failed to rescue neuronal defects in C. elegans lacking unc-43, the ortholog of human CAMK2A. In vitro, neurons derived from patient iPSCs displayed profound synaptic defects. Together, our data demonstrate that a recessive germline mutation in CAMK2A leads to neurodevelopmental defects in humans and suggest that dysfunctional CAMK2 paralogs may contribute to other neurological disorders.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Developmental Disabilities/genetics , Homozygote , Intellectual Disability/genetics , Loss of Function Mutation , Seizures/genetics , Chromosomes, Human, Pair 5 , Consanguinity , Family Health , Genetic Linkage , Humans , Jordan , Mutation, Missense , Sequence Analysis, DNA
5.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723550

ABSTRACT

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Subject(s)
Cell Culture Techniques/methods , Hematopoiesis , Macrophages/physiology , Neurons/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis
6.
PLoS Genet ; 10(7): e1004471, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010009

ABSTRACT

Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs), which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA), a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency.


Subject(s)
Fanconi Anemia/genetics , Tumor Suppressor Protein p53/biosynthesis , rho GTP-Binding Proteins/biosynthesis , Animals , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Repair/genetics , DNA Replication/genetics , Fanconi Anemia/pathology , Genomic Instability , Germ Cells/metabolism , Germ Cells/pathology , Humans , Hypogonadism/genetics , Hypogonadism/pathology , Mice , Mutation , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , rho GTP-Binding Proteins/genetics
7.
Nat Immunol ; 15(1): 98-108, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292363

ABSTRACT

Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Transcriptome/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD1/immunology , Antigens, CD1/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Differentiation/genetics , Cells, Cultured , Cluster Analysis , Cross-Priming/genetics , Cross-Priming/immunology , Dendritic Cells/metabolism , Flow Cytometry , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Integrins/genetics , Integrins/immunology , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...