Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Peripher Nerv Syst ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772550

ABSTRACT

BACKGROUND AND AIMS: This study aimed to report nine Charcot-Marie-Tooth disease (CMT) families with six novel IGHMBP2 mutations in our CMT2 cohort and to summarize the genetic and clinical features of all AR-CMT2S patients reported worldwide. METHODS: General information, clinical and neurophysiological data of 275 axonal CMT families were collected. Genetic screening was performed by inherited peripheral neuropathy related genes panel or whole exome sequencing. The published papers reporting AR-CMT2S from 2014 to 2023 were searched in Pubmed and Wanfang databases. RESULTS: In our CMT2 cohort, we detected 17 AR-CMT2S families carrying IGHMBP2 mutations and eight were published previously. Among these, c.743 T > A (p.Val248Glu), c.884A > G (p.Asp295Gly), c.1256C > A (p.Ser419*), c.2598_2599delGA (p.Lys868Sfs*16), c.1694_1696delATG (p.Asp565del) and c.2509A > T (p.Arg837*) were firstly reported. These patients prominently presented with early-onset typical axonal neuropathy and without respiratory dysfunction. So far, 56 AR-CMT2S patients and 57 different mutations coming from 43 families have been reported in the world. Twenty-nine of 32 missense mutations were clustered in helicase domain and ATPase region. The age at onset ranged from 0.11to 20 years (Mean ± SD: 3.43 ± 3.88 years) and the majority was infantile-onset (<2 years). The initial symptoms included weakness of limbs (19, 29.7%), delayed milestones (12, 18.8%), gait disturbance (11, 17.2%), feet deformity (8, 12.5%), feet drop (8, 12.5%), etc. INTERPRETATION: AR-CMT2S accounted for 6.2% in our CMT2 cohort. We firstly reported six novel IGHMBP2 mutations which expanded the genotypic spectrum of AR-CMT2S. Furthermore, 17 AR-CMT2S families could provide more resources for natural history study, drug research and development.

2.
J Peripher Nerv Syst ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705839

ABSTRACT

BACKGROUND AND AIMS: Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause axonal or demyelinating Charcot-Marie-Tooth disease (CMT) with autosomal dominant or recessive inheritance. In this study, we aim to report the genotypic and phenotypic features of GDAP1-related CMT in a Chinese cohort. METHODS: Clinical, neurophysiological, genetic data, and available muscle/brain imaging information of 28 CMT patients with GDAP1 variants were retrospectively collected. RESULTS: We identified 16 GDAP1 pathogenic variants, among which two novel variants c.980dup(p.L328FfsX25) and c.480+4T>G were first reported. Most patients (16/28) presented with AR or AD CMT2K phenotype. Clinical characteristics in our cohort demonstrated that the AR patients presented earlier onset, more severe phenotype compared with the AD patients. Considerable intra-familial phenotypic variability was observed among three AD families. Muscle atrophy and fatty infiltration in the lower extremity were detected by Muscle magnetic resonance imaging (MRI) scans in four patients. MRI showed two AR patients showed more severe muscle involvement of the posterior compartment than those of the anterolateral compartment in the calf. One patient carrying Q38*/H256R variants accompanied with mild periventricular leukoaraiosis. CONCLUSIONS: In this study, we conducted an analysis of clinical features of the GDAP1-related CMT patients, expanded the mutation spectrum in GDAP1 by reporting two novel variants, and presented the prevalent occurrence of the H256R mutation in China. The screening of GDAP1 should be particularly emphasized in Chinese patients with CMT2, given the incomplete penetrance and pathogenic inheritance patterns involving dominant and recessive modes.

3.
ISA Trans ; 148: 374-386, 2024 May.
Article in English | MEDLINE | ID: mdl-38664117

ABSTRACT

Accurate identification of the failure modes of Reinforced Concrete (RC) columns based on the design parameters of the structural members is critical for earthquake-resistant design and safety evaluation of existing structures. Existing identification methods have some problems, such as high cost, incomplete consideration of influencing factors, and low precision or recall in identifying shear or flexural-shear failure. In this paper, the main factors for the failure modes of RC columns are first analyzed and studied. Then, the problem of class imbalance in data samples is investigated. To identify the failure modes of RC columns, oversampling of data (BSB-FMC), model ensembling (RFB-FMC), cost-sensitive learning (CSB-FMC) and a fusion model of three strategies (BSFCB-FMC) are proposed. And finally, the SHapley Additive exPlanations (SHAP) method is used to provide a better interpretation of the designed model. The results show that the developed strategies can improve the accuracy of identifying the failure modes of RC columns compared to the models using a single Artificial Neural Network (ANN), a Support Vector Machine (SVM), a Random Forest (RF), and Adaptive Boosting (AdaBoost). The overall accuracy of the developed BSFCB-FMC model reaches 97%, and the precision and recall for the three failure modes are both above 90%. The designed model provides a solution for fast, accurate and cost-effective identification of the failure modes of RC columns.

4.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38319105

ABSTRACT

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Subject(s)
AMP-Activated Protein Kinases , Classical Swine Fever Virus , Mitophagy , Pyruvate Kinase , TOR Serine-Threonine Kinases , Viral Nonstructural Proteins , Virus Replication , Animals , AMP-Activated Protein Kinases/metabolism , Antiviral Agents , Classical Swine Fever/metabolism , Classical Swine Fever/virology , Classical Swine Fever Virus/growth & development , Classical Swine Fever Virus/physiology , Drug Design , Glycolysis , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Pyruvates/metabolism , Signal Transduction , Swine/metabolism , Swine/virology , TOR Serine-Threonine Kinases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
5.
J Neurol ; 271(1): 497-503, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776383

ABSTRACT

BACKGROUND: To identify genetic causes in 40 whole exome sequencing (WES)-negative Charcot-Marie-Tooth (CMT) families and provide a summary of the clinical and genetic features of the diagnosed patients. METHODS: The clinical information and sequencing data of 40 WES-negative families out of 131 CMT families were collected, and phenotype-driven reanalysis was conducted using the Exomiser software. RESULTS: The molecular diagnosis was regained in 4 families, increasing the overall diagnosis rate by 3.0%. One family with adolescent-onset pure CMT1 was diagnosed [POLR3B: c.2810G>A (p.R937Q)] due to the novel genotype-phenotype association. One infantile-onset, severe CMT1 family with deep sensory disturbance was diagnosed by screening the BAM file and harbored c.1174C>T (p.R392*) and 875_927delinsCTGCCCACTCTGCCCACTCTGCCCACTCTG (p.V292Afs53) of PRX. Two families were diagnosed due to characteristic phenotypes, including an infantile-onset ICMT family with renal dysfunction harboring c.213_233delinsGAGGAGCA (p.S72Rfs34) of INF2 and an adolescent-onset CMT2 family with optic atrophy harboring c.560C>T (p.P187L) and c.616A>G (p.K206E) of SLC25A46. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, the variants of POLR3B and SLC25A46 were classified as likely pathogenic, and the variants of INF2 and PRX were pathogenic. All these variants were first reported worldwide except for p.R392* of PRX. CONCLUSIONS: We identified five novel pathogenic variants in POLR3B, PRX, INF2, and SLC25A46, which broaden their phenotypic and genotypic spectrums. Regular phenotype-driven reanalysis is a powerful strategy for increasing the diagnostic yield of WES-negative CMT patients, and long-term follow-up and screening BAM files for contiguous deletion and missense variants are both essential for reanalysis.


Subject(s)
Charcot-Marie-Tooth Disease , Adolescent , Humans , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Exome , Mutation/genetics , Phenotype , Genotype , Mitochondrial Proteins/genetics , Phosphate Transport Proteins/genetics
6.
Microbiol Spectr ; 12(1): e0275823, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38100396

ABSTRACT

IMPORTANCE: CSFV infection in pigs causes persistent high fever, hemorrhagic necrotizing multi-organ inflammation, and high mortality, which seriously threatens the global swine industry. Cell death is an essential immune response of the host against pathogen invasion, and lymphopenia is the most typical clinical feature in the acute phase of CSFV infection, which affects the initial host antiviral immunity. As an "old" virus, CSFV has evolved mechanisms to evade host immune response after a long genetic evolution. Here, we show that necroptosis is a limiting host factor for CSFV infection and that CSFV-induced autophagy can subvert this host defense mechanism to promote its sustained replication. Our findings reveal a complex link between necroptosis and autophagy in the process of cell death, provide evidence supporting the important role for CSFV in counteracting host cell necrosis, and enrich our knowledge of pathogens that may subvert and evade this host defense.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Swine , Animals , Classical Swine Fever/genetics , Classical Swine Fever Virus/physiology , Mitophagy , Signal Transduction , Necroptosis , Autophagy
7.
Front Med (Lausanne) ; 10: 1301822, 2023.
Article in English | MEDLINE | ID: mdl-38155662

ABSTRACT

Ferroptosis is a distinctive form of iron-dependent cell death characterized by significant ultrastructural changes in mitochondria. Given the crucial involvement of mitochondria in various cellular processes such as reactive oxygen species production, energy metabolism, redox status, and iron metabolism, mounting evidence suggests a vital role of mitochondria in the regulation and execution of ferroptosis. Furthermore, there exists a strong correlation between ferroptosis and various diseases. In this review, we aim to summarize the mechanisms underlying the induction and defense of ferroptosis, emphasizing the influence of mitochondria on this intricate process. Additionally, we provide an overview of the role of ferroptosis in disease, particularly cancer, and elucidate the mechanisms by which drugs targeting mitochondria impact ferroptosis. By presenting a theoretical foundation and reference point, this review aims to contribute to both basic cell biology research and the investigation of clinically relevant diseases.

8.
J Peripher Nerv Syst ; 28(4): 629-641, 2023 12.
Article in English | MEDLINE | ID: mdl-37749855

ABSTRACT

BACKGROUND AND AIMS: Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disorder mainly caused by abnormally expanded GGC repeats within the NOTCH2NLC gene. Most patients with NIID show polyneuropathy. Here, we aim to investigate diagnostic electrophysiological markers of NIID. METHODS: In this retrospective dual-center study, we reviewed 96 patients with NOTCH2NLC-related NIID, 94 patients with genetically confirmed Charcot-Marie-Tooth (CMT) disease, and 62 control participants without history of peripheral neuropathy, who underwent nerve conduction studies between 2018 and 2022. RESULTS: Peripheral nerve symptoms were presented by 53.1% of patients with NIID, whereas 97.9% of them showed peripheral neuropathy according to electrophysiological examinations. Patients with NIID were characterized by slight demyelinating sensorimotor polyneuropathy; some patients also showed mild axonal lesions. Motor nerve conduction velocity (MCV) of the median nerve usually exceeded 35 m/s, and were found to be negatively correlated with the GGC repeat sizes. Regarding the electrophysiological differences between muscle weakness type (n = 27) and non-muscle weakness type (n = 69) of NIID, nerve conduction abnormalities were more severe in the muscle weakness type involving both demyelination and axonal impairment. Notably, specific DWI subcortical lace sign was presented in only 33.3% of muscle weakness type, thus it was difficult to differentiate them from CMT. Combining age of onset, distal motor latency, and compound muscle action potential of the median nerve showed the optimal diagnostic performance to distinguish NIID from major CMT (AUC = 0.989, sensitivity = 92.6%, specificity = 97.4%). INTERPRETATION: Peripheral polyneuropathy is common in NIID. Our study suggest that nerve conduction study is useful to discriminate NIID.


Subject(s)
Charcot-Marie-Tooth Disease , Neurodegenerative Diseases , Humans , Nerve Conduction Studies , Retrospective Studies , Neurodegenerative Diseases/diagnosis , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Muscle Weakness
10.
Sci Total Environ ; 905: 167199, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37734616

ABSTRACT

Aquacultures are the main reason for the environmental selection of antibiotic resistance genes (ARGs), resulting in the enrichment of ARGs. As a filter, a marine mangrove ecosystem can reduce antimicrobial resistance (AMR) or eliminate ARGs; however, its elimination mechanism remains unclear. This study investigated the spatiotemporal dynamic distribution of ARGs in two different types of mangrove habitats (shrimp ponds and virgin forests), within a subtropical gulf located in the Beibu Gulf, China, during dry and wet seasons by using metagenomics and real time quantitative polymerase chain reaction (RT-qPCR) analysis. As the key environmental factors, sulfide, salinity, and mobile genetic elements significantly were found to contribute to ARGs distribution, respectively. Wet and dry seasons influenced the dispersal of ARGs but did not affect the microbial community structure. Three potential biomarkers, TEM-116, smeD, and smeE, played key roles in seasonal differences. The key different genes in the biological relevance of absolute abundance were demonstrated by RT-qPCR. Co-occurrence network analysis indicated that high-abundance ARGs were distributed in a modular manner. For the first time, a risk index weighted by risk rank (RIR) was proposed and used to quantify the human risk of ARGs in the mangrove metagenome. The shrimp ponds during the wet season showed the highest RIR detected. In addition to offering a perspective on reducing AMR in mangrove wetlands, this study constructed the first spatiotemporal dynamic model of ARGs in the Beibu Gulf, China and contributed to revealing the global spread of ARGs. Meanwhile, this study proposes a new pipeline for assessing the risk of ARGs, while also exploring the concept of "One Health."


Subject(s)
Genes, Bacterial , Microbiota , Animals , Humans , Ponds/analysis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Crustacea , China
11.
Int J Biol Macromol ; 249: 126443, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37604413

ABSTRACT

Classical swine fever (CSF) is a severe infectious disease caused by the classical swine fever virus (CSFV) that poses significant challenges to the swine industry. α-ketoglutarate dehydrogenase (OGDH), the first rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, catalyzes α-ketoglutarate (α-KG) to succinyl-CoA, playing a crucial role in glycometabolism. Our previous studies showed that CSFV disrupts the TCA cycle, resulting in α-KG accumulation. However, the interplay between CSFV and OGDH remains unclear. In this study, we found that CSFV significantly reduces OGDH protein levels and promotes α-KG secretion through OGDH in PK-15 cells. Furthermore, we observed CSFV C protein interacts with OGDH and revealed that CSFV utilizes NDP52/NBR1 to target OGDH protein degradation in the autophagy-lysosome pathway. We also unveiled that OGDH overexpression inhibits CSFV proliferation, whereas OGDH knockdown increases CSFV proliferation. Further investigation into the mechanisms of OGDH on CSFV replication revealed that OGDH regulates the AMPK-mTOR-autophagy pathway. Additionally, using the autophagy agonist/inhibitor, rapamycin/3-MA, we observed that OGDH modulates autophagy to regulate the IRF3-IFN-ß network and CSFV replication. These findings shed light on the role of OGDH in CSFV infection and host metabolism, promoting the development of innovative strategies for combating CSFV and other viral infections via targeting metabolic pathways.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Swine , Animals , Virus Replication
12.
J Peripher Nerv Syst ; 28(4): 608-613, 2023 12.
Article in English | MEDLINE | ID: mdl-37584201

ABSTRACT

BACKGROUND AND AIMS: Biallelic variants in the sorbitol dehydrogenase (SORD) gene have been identified as the genetic cause of autosomal recessive (AR) peripheral neuropathy (PN) manifesting as Charcot-Marie-Tooth disease type 2 (CMT2) or distal hereditary motor neuropathy (dHMN). We aim to observe the genetic and clinical spectrum of a cohort of patients with SORD-related PN (SORD-PN). METHODS: A total of 107 patients with AR or sporadic CMT2/dHMN underwent molecular diagnosis by whole-exome sequencing and subsequent Sanger sequencing validation. Available phenotypic data for SORD-PN were collected and analyzed. RESULTS: Eleven (10.28%) of 107 patients were identified as SORD-PN, including four with CMT2 and seven with dHMN. The SORD variant c.210 T > G;p.His70Gln in F-d3 was firstly reported and subsequent analysis showed that it resulted in loss of SORD enzyme function. Evidence of subclinical muscle involvement was frequently detected in patients with SORD-PN, including mildly to moderately elevated serum creatine kinase (CK) levels in 10 patients, myogenic electrophysiological changes in one patient, and muscle edema in five patients undergoing lower extremity MRI. Fasting serum sorbitol level was 88-fold higher in SORD-PN patients (9.69 ± 1.07 mg/L) than in healthy heterozygous subjects (0.11 ± 0.01 mg/L) and 138-fold higher than in healthy controls (0.07 ± 0.02 mg/L). INTERPRETATION: The novel SORD variant c.210 T > G;p.His70Gln and evidence of subclinical muscle involvement were identified, which expanded the genetic and clinical spectrum of SORD-PN. Subclinical muscle involvement might be a common but easily overlooked clinical feature. The serum CK and fasting serum sorbitol levels were expected to be sensitive biomarkers confirmed by follow-up cohort study.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Humans , L-Iditol 2-Dehydrogenase/genetics , Follow-Up Studies , Charcot-Marie-Tooth Disease/genetics , Muscles , Sorbitol , Mutation/genetics , Pedigree , Hereditary Sensory and Motor Neuropathy/genetics
13.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373204

ABSTRACT

The innate immune pathway serves as the first line of defense against viral infections and plays a crucial role in the host's immune response in clearing viruses. Prior research has indicated that the influenza A virus has developed various strategies to avoid host immune responses. Nevertheless, the role of the NS1 protein of the canine influenza virus (CIV) in the innate immune pathway remains unclear. In this study, eukaryotic plasmids of NS1, NP, PA, PB1, and PB2 were constructed, and it was found that these proteins interact with melanoma differentiation-associated gene 5 (MDA5) and antagonize the activation of IFN-ß promoters by MDA5. We selected the NS1 protein for further study and found that NS1 does not affect the interaction between the viral ribonucleoprotein (RNP) subunit and MDA5, but that it downregulates the expression of the laboratory of genetics and physiology 2 (LGP2) and retinoic acid-inducible gene-I (RIG-I) receptors in the RIG-I pathway. Additionally, NS1 was found to inhibit the expression of several antiviral proteins and cytokines, including MX dynamin like GTPase 1 (MX1), 2'-5'oligoadenylate synthetase (OAS), Signal Transducers and Activators of Transcription (STAT1), tripartite motif 25 (TRIM25), interleukin-2 (IL-2), IFN, IL-8, and IL-1ß. To further investigate the role of NS1, a recombinant H3N2 virus strain (rH3N2) and an NS1-null virus (rH3N2ΔNS1) were rescued using reverse-genetic technology. The rH3N2ΔNS1 virus exhibited lower viral titers compared to rH3N2, but had a stronger activation effect on the receptors LGP2 and RIG-I. Furthermore, when compared to rH3N2, rH3N2ΔNS1 exhibited a more pronounced activation of antiviral proteins such as MX1, OAS, STAT1, and TRIM25, as well as antiviral cytokines such as IL-6, IFN-ß, and IL-1ß. These findings suggest a new mechanism by which NS1, a nonstructural protein of CIV, facilitates innate immune signaling and provides new avenues for the development of antiviral strategies.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Animals , Dogs , Humans , Immunity, Innate , Viral Nonstructural Proteins/metabolism , Cytokines , Virus Replication , Antiviral Agents
14.
Article in English | MEDLINE | ID: mdl-37348646

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease. Recently, several gain-of-function mutations in SPTLC1 were associated with juvenile ALS. SPTLC1 encodes for a subunit of the serine-palmitoyltransferase (SPT) - the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL). SPT activity, and thus SL de novo synthesis, is tightly controlled by a homeostatic feedback mechanism mediated by ORMDL proteins. Here we report a novel SPTLC1p.L38R mutation in a young Chinese girl with a signature of juvenile ALS. The patient presented with muscular weakness and atrophy, tongue tremor and fasciculation, breathing problems and positive pyramidal signs. All SPTLC1-ALS mutations including the SPTLC1 p.L38R are located within a single membrane-spanning domain of the protein and impede the interaction with the regulatory ORMDL subunit of SPT. Pertinent to the altered homeostatic control, lipid analysis showed overall increased SL levels in the patient plasma. An increased SPT activity and SL de novo synthesis was confirmed in p.L38R expressing HEK293 cells. Particularily dihydro-sphingolipids (dhSL) were signficantly increased in patient plasma and p.L38R mutant expressing cells. Increased dhSL formation has been previously linked to neurotoxicity and may be involved in the pathomechanism of SPTLC1-ALS mutations.


Subject(s)
Amyotrophic Lateral Sclerosis , Female , Humans , Child , Amyotrophic Lateral Sclerosis/genetics , HEK293 Cells , Sphingolipids/metabolism , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism
15.
Chemosphere ; 323: 138175, 2023 May.
Article in English | MEDLINE | ID: mdl-36863624

ABSTRACT

Adsorbents featuring abundant binding sites and high affinity to phosphate have been used to resolve water eutrophication. However, most of the developed adsorbents were focused on improving the adsorption ability of phosphate but ignored the effect of biofouling on the adsorption process especially used in the eutrophic water body. Herein, a novel MOF-supported carbon fibers (CFs) membrane with high regeneration and antifouling capability, was prepared by in-situ synthesis of well-dispersed MOF on CFs membrane, to remove phosphate from algae-rich water. The hybrid UiO-66-(OH)2@Fe2O3@CFs membrane exhibits a maximum adsorption capacity of 333.3 mg g-1 (pH 7.0) and excellent selectivity for phosphate sorption over coexisting ions. Moreover, the Fe2O3 nanoparticles anchored on the surface of UiO-66-(OH)2 through 'phenol-Fe(III)' reaction can endow the membrane with the robust photo-Fenton catalytic activity, which improves long-term reusability even under algae-rich condition. After 4 times photo-Fenton regenerations, the regeneration efficiency of the membrane could remain 92.2%, higher than that of hydraulic cleaning (52.6%). Moreover, the growth of C. pyrenoidosa was significantly reduced by 45.8% within 20 days via metabolism inhibition due to membrane-induced P-deficient conditions. Hence, the developed UiO-66-(OH)2@Fe2O3@CFs membrane holds significant prospects for large-scale application in phosphate sequestration of eutrophic water bodies.


Subject(s)
Water , Humans , Carbon Fiber , Ferric Compounds/chemistry , Phosphates , Adsorption
16.
Emerg Microbes Infect ; 12(1): 2164217, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36583373

ABSTRACT

CSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear. In this study, using transcriptomics and metabolomics methods, we found that CSFV infection alters innate host immunity by activating the interferon pathway, inhibiting host inflammation, apoptosis, and remodelling host metabolism in porcine alveolar macrophages. Moreover, we revealed that autophagy could alter innate immunity and metabolism induced by CSFV infection. Enhanced autophagy further inhibited CSFV-induced RIG-I-IRF3 signal transduction axis and JAK-STAT signalling pathway and blocked type I interferon production while reducing autophagy inhibition of the NF-κB signalling pathway and apoptosis in CSFV infection cells. Furthermore, the level of CSFV infection-induced glycolysis and the content of lactate and pyruvate, as well as 3-phosphoglyceraldehyde, a derivative of glycolysis converted to serine, was altered by autophagy. We also found that silencing HK2 (hexokinase 2), the rate-limiting enzyme of glycolytic metabolism, could induce autophagy but reduce the interferon signalling pathway, NF-κB signalling pathway, and inhibition of apoptosis induced by CSFV infection. In addition, inhibited cellular autophagy by silencing ATG5 or using 3-Methyladenine, could backfill the inhibitory effect of silencing HK2 on the cellular interferon signalling pathway, NF-κB signalling pathway, and apoptosis.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Immunity, Innate , Animals , Autophagy , Classical Swine Fever Virus/physiology , Homeostasis , Interferons , NF-kappa B/metabolism , Swine , Virus Replication , Classical Swine Fever/immunology
17.
Int J Mol Sci ; 23(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36012666

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission of the virus in the host is a process of a "game" with the host. It can be assumed that the virus has evolved various mechanisms to use the host's functions for its replication and transmission, including ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use various processes of ERAD to promote their transmission. This review describes the occurrence of ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and immune response of the host, and we will focus on the role of E3 ubiquitin ligase.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Viruses , Endoplasmic Reticulum/metabolism , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/metabolism , Viruses/metabolism
18.
Microorganisms ; 10(7)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35889013

ABSTRACT

Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.

19.
Front Genet ; 13: 853612, 2022.
Article in English | MEDLINE | ID: mdl-35464838

ABSTRACT

With the upgrade and development of the high-throughput sequencing technology, multi-omics data can be obtained at a low cost. However, mapping tools that existed for microbial multi-omics data analysis cannot satisfy the needs of data description and result in high learning costs, complex dependencies, and high fees for researchers in experimental biology fields. Therefore, developing a toolkit for multi-omics data is essential for microbiologists to save effort. In this work, we developed MicrobioSee, a real-time interactive visualization tool based on web technologies, which could visualize microbial multi-omics data. It includes 17 modules surrounding the major omics data of microorganisms such as the transcriptome, metagenome, and proteome. With MicrobioSee, methods for plotting are simplified in multi-omics studies, such as visualization of diversity, ROC, and enrichment pathways for DEGs. Subsequently, three case studies were chosen to represent the functional application of MicrobioSee. Overall, we provided a concise toolkit along with user-friendly, time-saving, cross-platform, and source-opening for researchers, especially microbiologists without coding experience. MicrobioSee is freely available at https://microbiosee.gxu.edu.cn.

20.
Cells ; 11(4)2022 02 17.
Article in English | MEDLINE | ID: mdl-35203359

ABSTRACT

Mitophagy, which is able to selectively clear excess or damaged mitochondria, plays a vital role in the quality control of mitochondria and the maintenance of normal mitochondrial functions in eukaryotic cells. Mitophagy is involved in many physiological and pathological processes, including apoptosis, innate immunity, inflammation, cell differentiation, signal transduction, and metabolism. Viral infections cause physical dysfunction and thus pose a significant threat to public health. An accumulating body of evidence reveals that some viruses hijack mitophagy to enable immune escape and self-replication. In this review, we systematically summarize the pathway of mitophagy initiation and discuss the functions and mechanisms of mitophagy in infection with classical swine fever virus and other specific viruses, with the aim of providing a theoretical basis for the prevention and control of related diseases.


Subject(s)
Mitophagy , Virus Diseases , Animals , Apoptosis , Immunity, Innate , Mitochondria/metabolism , Mitophagy/physiology , Swine , Virus Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...