Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 772
Filter
1.
Adv Mater ; : e2406153, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313983

ABSTRACT

Dipeptidyl peptidase 4 (DPP4) positive fibroblasts play a pivotal role in scar development following skin injury. Heterogeneous vascular endothelial cells (ECs) within scarred areas retain the capacity to drive tissue regeneration and repair. Simultaneously, TREM2 macrophages play a crucial role in the progression and resolution of fibrosis by engaging in mutual regulation with ECs. However, effective strategies to inhibit scar formation through multi-factor regulation of the scar microenvironment remain a challenge. Here, CAR-TREM2-macrophages (CAR-TREM2-Ms) capable of targeting DPP4+ fibroblasts and modulating ECs subtype within the scar microenvironment are engineered to effectively prevent scarring. Hydrogel microporous microneedles (mMNs) are employed to deliver CAR-TREM2-Ms, which can effectively alleviate scar. Single-cell transcriptome sequencing (scRNA-seq) analysis reveals that CAR-TREM2-Ms can modify ECs fibrotic phenotype and regulate fibrosis by suppressing the profibrotic gene leucine-rich-alpha-2-glycoprotein 1 (Lrg1). In vitro experiments further demonstrate that CAR-TREM2-Ms improve the scar microenvironment by phagocytosing DPP4+ fibroblasts and suppressing TGFß secretion. This, in turn, inhibits the phenotypic conversion of LRG1 ECs and provides multifactorial way of alleviating scars. This study uncovers the evidence that mMNs attached to CAR-TREM2-Ms may exert vital influences on skin scarring through the regulation of the skin scar microenvironment, providing a promising approach for treating posttraumatic scarring.

2.
Sci Rep ; 14(1): 22319, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333622

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disease that is highly susceptible to kidney injury. Di'ao XinXueKang capsules (DXXK) is a novel Chinese herbal medicine that has been used in clinical trials for the therapy of DM and kidney disease, but the underlying pharmacological mechanism remains unclear. This study aims to integrate network pharmacology, molecular docking and in vivo experiments to explore the potential mechanisms of DXXK in the treatment of diabetic kidney injury. The chemical constituents of DXXK were extracted from the ETCM and Batman-TCM databases, and then evaluated for their pharmacological activity via the Swiss ADME platform. Multiple disease databases were searched and integrated for DM-related targets. Overlapping targets were then collected to construct a protein-protein interaction (PPI) network. KEGG and GO enrichment analyses were performed based on the Metascape database, and molecular docking was performed using AutoDock Vina software. The main components in DXXK were analyzed by HPLC. The results of network pharmacology and molecular docking were validated in an animal model of DM induced by the combination of a high-fat diet (HFD) and streptozotocin (STZ). We screened and obtained 7 ingredients and identified dioscin, protodioscin, and pseudoprotodioscin as the major components of DXXK by HPLC. A total of 2,216 DM-related pathogenic genes were obtained from DrugBank, GeneCards, OMIM, and DisGeNET databases. KEGG and GO enrichment analyses indicated that the TGF-beta signaling pathway is a critical pathway associated with DM therapy. Molecular docking revealed that the ingredients in DXXK bind to the pivotal targets TGFß1, Smad2, and Smad3. In diabetic mice, we found that DXXK alleviated diabetic symptoms, lowered blood glucose, improved insulin tolerance, and modulated lipid metabolism. Furthermore, DXXK attenuated renal lesions and fibrosis by downregulating TGFß1, Smad2, and Smad3. Collectively, our results suggest that DXXK has the potential to regulate glucolipid metabolism in DM, and it may serve as a viable therapeutic option for renoprotection by inhibiting of the TGF-ß1/Smad2/3 pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Diabetes Mellitus, Experimental/drug therapy , Protein Interaction Maps/drug effects , Mice , Male
3.
Nat Commun ; 15(1): 8015, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271695

ABSTRACT

Realizing an efficient turnover frequency in the acidic oxygen evolution reaction by modifying the reaction configuration is crucial in designing high-performance single-atom catalysts. Here, we report a "single atom-double site" concept, which involves an activatable inert manganese atom redox chemistry in a single-atom Ru-Mn dual-site platform with tunnel Ni ions as the trigger. In contrast to conventional single-atom catalysts, the proposed configuration allows direct intramolecular oxygen coupling driven by the Ni ions intercalation effect, bypassing the secondary deprotonation step instead of the kinetically sluggish adsorbate evolution mechanism. The strong bonding of Ni ions activates the inert manganese terminal groups and inhibits the cross-site disproportionation process inherent in the Mn scaffolding, which is crucial to ensure the dual-site platform. As a result, the single-atom Ru-Ni-Mn octahedral molecular sieves catalyst delivers a low overpotential, adequate mass activity and good stability.

4.
Plant Divers ; 46(4): 530-536, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39280971

ABSTRACT

Forests, the largest terrestrial carbon sinks, play an important role in carbon sequestration and climate change mitigation. Although forest attributes and environmental factors have been shown to impact aboveground biomass, their influence on biomass stocks in species-rich forests in southern China, a biodiversity hotspot, has rarely been investigated. In this study, we characterized the effects of environmental factors, forest structure, and species diversity on aboveground biomass stocks of 30 plots (1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi, China. Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions. Furthermore, we found that aboveground biomass was positively correlated with stand age, mean annual precipitation, elevation, structural attributes and species richness, although not with species evenness. When we compared stands with the same basal area, we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height. These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China. Notably, many natural forests in southern China are not fully stocked. Therefore, their continued growth will increase their carbon storage over time.

5.
Neurosci Bull ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285154

ABSTRACT

The looming stimulus-evoked flight response to approaching predators is a defensive behavior in most animals. However, how looming stimuli are detected in the retina and transmitted to the brain remains unclear. Here, we report that a group of GABAergic retinal ganglion cells (RGCs) projecting to the superior colliculus (SC) transmit looming signals from the retina to the brain, mediating the looming-evoked flight behavior by releasing GABA. GAD2-Cre and vGAT-Cre transgenic mice were used in combination with Cre-activated anterograde or retrograde tracer viruses to map the inputs to specific GABAergic RGC circuits. Optogenetic technology was used to assess the function of SC-projecting GABAergic RGCs (scpgRGCs) in the SC. FDIO-DTA (Flp-dependent Double-Floxed Inverted Open reading frame-Diphtheria toxin) combined with the FLP (Florfenicol, Lincomycin & Prednisolone) approach was used to ablate or silence scpgRGCs. In the mouse retina, GABAergic RGCs project to different brain areas, including the SC. ScpgRGCs are monosynaptically connected to parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of scpgRGCs triggers GABA-mediated inhibition in SC neurons. Ablation or silencing of scpgRGCs compromises looming-evoked flight responses without affecting image-forming functions. Our study reveals that scpgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.

6.
Nat Commun ; 15(1): 8055, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277585

ABSTRACT

Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.


Subject(s)
Glycopeptides , Polysaccharides , Software , Spike Glycoprotein, Coronavirus , Glycosylation , Polysaccharides/metabolism , Polysaccharides/chemistry , Humans , Glycopeptides/chemistry , Glycopeptides/metabolism , Glycopeptides/analysis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Animals , Proteomics/methods , COVID-19/virology
7.
Drug Dev Res ; 85(6): e22254, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234934

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Syncytin-1 (Syn), an envelope glycoprotein encoded by the env gene of the human endogenous retrovirus-W family, has been resorted to be highly expressed in biopsies from the muscles from ALS patients; however, the specific regulatory role of Syn during ALS progression remains uncovered. In this study, C57BL/6 mice were injected with adeno-associated virus-overexpressing Syn, with or without Fasudil administration. The Syn expression was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry analysis. The histological change of anterior tibial muscles was determined by hematoxylin-eosin staining. Qualitative ultrastructural analysis of electron micrographs obtained from lumbar spinal cords was carried out. Serum inflammatory cytokines were assessed by enzyme linked immunosorbent assay (ELISA) assay and motor function was recorded using Basso, Beattie, and Bresnahan (BBB) scoring, climbing test and treadmill running test. Immunofluorescence and western blot assays were conducted to examine microglial- and motor neurons-related proteins. Syn overexpression significantly caused systemic inflammatory response, muscle tissue lesions, and motor dysfunction in mice. Meanwhile, Syn overexpression promoted the impairment of motor neuron, evidenced by the damaged structure of the neurons and reduced expression of microtubule-associated protein 2, HB9, neuronal nuclei and neuron-specific enolase in Syn-induced mice. In addition, Syn overexpression greatly promoted the expression of CD16/CD32 and inducible nitric oxide synthase (M1 phenotype markers), and reduced the expression of CD206 and arginase 1 (M2 phenotype markers). Importantly, the above changes caused by Syn overexpression were partly abolished by Fasudil administration. This study provides evidence that Syn-activated microglia plays a pivotal role during the progression of ALS.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Mice, Inbred C57BL , Microglia , Motor Neurons , Animals , Microglia/drug effects , Microglia/metabolism , Motor Neurons/drug effects , Motor Neurons/metabolism , Mice , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Gene Products, env , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Pregnancy Proteins/metabolism , Male , Cytokines/metabolism , Disease Models, Animal , Motor Activity/drug effects , Spinal Cord/metabolism , Spinal Cord/drug effects
8.
J Med Chem ; 67(16): 14574-14585, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39092992

ABSTRACT

Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, have attracted a significant amount of attention due to their biological activities. This study identified GPR18 as the target of partial agonist CBD activating the p42/p44 MAPK pathway leading to migration of endometrial epithelial cells. Induced fit docking (IFD) showed that the affinity of THC for GPR18 is higher than that of CBD, and molecular dynamics (MD) simulations showed that CBD-GPR18 complexes at 130/200 ns might have stable conformations, potentially activating GPR18 by changing the distances of key residues in its active pocket. In contrast, THC maintains "metastable" conformations, generating a "shrinking space" leading to full agonism of THC by adding mechanical constraints in GPR18's active pocket. Steered molecular dynamics (SMD) revealed GPR18's active pocket was influenced more by CBD's partial agonism compared with THC. This combined IFD-MD-SMD method may be used to explain the mechanism of activation of partial or full agonists of GPR18.


Subject(s)
Cannabidiol , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Cannabidiol/pharmacology , Cannabidiol/chemistry , Cannabidiol/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Dronabinol/pharmacology , Dronabinol/chemistry , Dronabinol/metabolism , Dronabinol/analogs & derivatives , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Cell Movement/drug effects , Female
9.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39092889

ABSTRACT

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Subject(s)
Cell Transdifferentiation , Dexamethasone , Glaucoma , Myofibroblasts , Rho Guanine Nucleotide Exchange Factors , Trabecular Meshwork , Dexamethasone/pharmacology , Trabecular Meshwork/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/cytology , Cell Transdifferentiation/drug effects , Animals , Humans , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Glaucoma/pathology , Glaucoma/metabolism , Cells, Cultured , Glucocorticoids/pharmacology , Mice, Inbred C57BL , Male
10.
Food Funct ; 15(18): 9037-9052, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39150321

ABSTRACT

The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.


Subject(s)
Cognitive Dysfunction , Fatty Acids, Volatile , Galactose , Gastrointestinal Microbiome , Ginsenosides , Ginsenosides/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Mice , Male , Fatty Acids, Volatile/metabolism , Mice, Inbred C57BL , Dysbiosis/drug therapy , Dysbiosis/microbiology , Disease Models, Animal , Toll-Like Receptor 4/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
11.
Nat Commun ; 15(1): 6610, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098904

ABSTRACT

There is no effective and noninvasive solution for thrombolysis because the mechanism by which certain thrombi become tissue plasminogen activator (tPA)-resistant remains obscure. Endovascular thrombectomy is the last option for these tPA-resistant thrombi, thus a new noninvasive strategy is urgently needed. Through an examination of thrombi retrieved from stroke patients, we found that neutrophil extracellular traps (NETs), ε-(γ-glutamyl) lysine isopeptide bonds and fibrin scaffolds jointly comprise the key chain in tPA resistance. A theranostic platform is designed to combine sonodynamic and mechanical thrombolysis under the guidance of ultrasonic imaging. Breakdown of the key chain leads to a recanalization rate of more than 90% in male rat tPA-resistant occlusion model. Vascular reconstruction is observed one month after recanalization, during which there was no thrombosis recurrence. The system also demonstrates noninvasive theranostic capabilities in managing pigs' long thrombi (>8 mm) and in revascularizing thrombosis-susceptible tissue-engineered vascular grafts, indicating its potential for clinical application. Overall, this noninvasive theranostic platform provides a new strategy for treating tPA-resistant thrombi.


Subject(s)
Thrombolytic Therapy , Thrombosis , Tissue Plasminogen Activator , Animals , Tissue Plasminogen Activator/therapeutic use , Humans , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Male , Rats , Thrombolytic Therapy/methods , Extracellular Traps/metabolism , Swine , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Fibrin/metabolism , Theranostic Nanomedicine/methods , Drug Resistance , Stroke/diagnostic imaging , Stroke/therapy , Stroke/drug therapy
12.
Article in English | MEDLINE | ID: mdl-39096204

ABSTRACT

AIMS: Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), as induced by dexamethasone (DEX), is believed to play an important role in the onset of glucocorticoid-induced glaucoma (GIG). Abnormal ECM deposition is a consequence of mitochondrial dysfunction. We aimed to clarify how mitochondrial dysfunction leads to ECM deposition within the TM and to support the development of novel therapeutic strategies. RESULTS: In primary human TM cells (pHTMCs) and a dexamethasone acetate-induced murine model of GIG, glucocorticoid administration stimulated both mitochondrial fission and ECM deposition. Excessive mitochondrial fission leads to dysfunction and the overexpression of ECM proteins in pHTMCs. Notably, when pHTMCs were treated with the Drp1 inhibitor Mdivi-1 or with Drp1 siRNA, we observed a marked reduction in DEX-induced mitochondrial damage and ECM proteins in vitro. Furthermore, in C57BL/6J mice, treatment with Mdivi-1 mitigated mitochondrial damage and blocked ECM deposition within the TM. We then employed Ro3306 to inhibit the CDK1-mediated phosphorylation of Drp1 at Ser 616, which restored mitochondrial function and diminished DEX-induced ECM protein expression in pHTMCs. INNOVATION: This study illuminates the pathogenic mechanism linking mitochondrial dysfunction to ECM deposition in GIG. Our innovative approach revealed that DEX stimulates mitochondrial fission via CDK1-mediated p-Drp1s616 overexpression, which drives ECM accumulation. It offered a novel therapeutic strategy for reducing ECM protein expression by inhibiting excessive mitochondrial fission and restoring mitochondrial function. CONCLUSION: By targeting the CDK1/Drp1-driven mitochondrial fission process, we can counteract DEX-induced ECM deposition in the TM both in vivo and in vitro.

13.
Transl Vis Sci Technol ; 13(8): 24, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39136959

ABSTRACT

Purpose: Intravitreal injection of anti-VEGF antibodies remains the primary therapy for exudative age-related macular degeneration (exAMD), although its efficacy is limited. Previous research has demonstrated that both a loss-of-function mutation of srr and the intravenous injection of a serine racemase inhibitor, L-aspartic acid ß-hydroxamate (L-ABH), significantly inhibit laser-induced choroidal neovascularization (CNV) in mice. Given that L-ABH is a small molecule, this study investigated the effects of L-ABH administered via eye drops on CNV, aiming to develop a noninvasive treatment strategy for exAMD. Methods: CNV models in mice and rhesus macaques were established through laser photocoagulation. Seven monkeys were randomly assigned to receive either saline solution or L-ABH eye drops. Intraperitoneal or intravenous injection of fluorescein characterized CNV in both mice and monkeys. Fluorescein fundus angiography was used to assess leakage, whereas optical coherence tomography measured retinal thickness in the monkeys. Results: L-ABH eye drops significantly reduced fluorescein leakage in laser-injured mice (P < 0.001 compared to saline). In laser-injured rhesus macaques, the average percent changes in leakage areas treated with L-ABH were 2.5% ± 25.8% (P = 0.004) and 1.5% ± 75.7% (P = 0.023 compared to saline solution) on day 14 and day 28, respectively. However, L-ABH eye drops did not significantly affect the number of grade IV laser spots or retinal thickness, whereas bevacizumab did. Conclusions: This study demonstrates the potential efficacy of an SRR inhibitor in two animal models of laser-induced CNV. Translational Relevance: This represents the first investigation into the effects of topical delivery of an SRR inhibitor on CNV.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Fluorescein Angiography , Macaca mulatta , Mice, Inbred C57BL , Tomography, Optical Coherence , Animals , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Mice , Racemases and Epimerases/antagonists & inhibitors , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Laser Coagulation/adverse effects , Ophthalmic Solutions , Male , Choroid/drug effects , Choroid/pathology , Choroid/diagnostic imaging , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/therapeutic use , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use
14.
Nat Commun ; 15(1): 7038, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147846

ABSTRACT

Soft-matter-based photonic crystals like blue-phase liquid crystals (BPLC) have potential applications in wide-ranging photonic and bio-chemical systems. To date, however, there are limitations in the fabrication of large monocrystalline BPLCs. Traditional crystal-growth process involves the transition from a high-temperature disordered phase to an ordered (blue) phase and is generally slow (takes hours) with limited achievable lattice structures, and efforts to improve molecular alignment through post-crystallization field application typically prove ineffective. Here we report a systematic study on the molecular self-assembly dynamics of BPLC starting from a highly ordered phase in which all molecules are unidirectionally aligned by a strong electric field. We have discovered that, near the high-temperature end of the blue phase, if the applied field strength is then switched to an intermediate level or simply turned off, large-area monocrystalline BPLCs of various symmetries (tetragonal, orthorhombic, cubic) can be formed in minutes. Subsequent temperature tuning of the single crystal at a fixed applied field allows access to different lattice parameters and the formation of never-before-seen monoclinic structures. The formed crystals remain stable upon field removal. The diversity of stable monocrystalline BPLCs with widely tunable crystalline symmetries, band structures, and optical dispersions will significantly improve and expand their application potentials.

15.
Emerg Microbes Infect ; 13(1): 2396887, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39178284

ABSTRACT

Anti-interferon-γ autoantibodies (AIGAs) syndrome is susceptible to disseminated opportunistic infections due to increased AIGAs, but its clinical immunological characteristics remain unrecognized. We conducted a prospective cohort study between January 2021 and December 2023, recruiting patients with opportunistic infections who were categorized into AIGAs-positive and AIGAs-negative groups. Clinical immunological data and outcomes were documented. A subset of AIGAs-positive patients received glucocorticoid treatment, and its effectiveness was evaluated. A total of 238 patients were enrolled, with 135 AIGAs-positive and 103 AIGAs-negative patients. AIGAs-positive patients showed higher rates of multiple pathogen dissemination, shorter progression-free survival (PFS), and increased exacerbation frequency. They also showed elevated erythrocyte sedimentation rate (ESR), globulin (GLB), immunoglobulin (Ig)G, IgE, and IgG4 levels. Among the 70 AIGAs-positive patients monitored for at least six months, three subtypes were identified: high AIGAs titer with immune damage, high AIGAs titer without immune damage, and low AIGAs titer without immune damage. Of the 55 patients followed for 1 year, decreasing AIGAs titer and immune indices (GLB, IgG, IgE, IgG4) were observed. Among the 31 patients with high AIGAs titer and immune damage treated with low-dose glucocorticoids at the stable phase, reductions were observed in immune indices and AIGAs titer in 67.74% of cases. In summary, AIGAs-positive patients exhibit infectious and immunological characteristics. Elevated AIGAs, IgG, IgG4, and IgE indicate abnormal immune damages. AIGAs titer generally decrease over time. Stable-phase AIGAs-positive patients can be categorized into three subtypes, with those having high AIGAs titer and increased immune indices potentially benefitting from glucocorticoid treatment.


Subject(s)
Autoantibodies , Interferon-gamma , Humans , Prospective Studies , Male , Female , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology , Interferon-gamma/blood , Interferon-gamma/immunology , Aged , Adult , Glucocorticoids/therapeutic use , Opportunistic Infections/immunology , Opportunistic Infections/drug therapy , Syndrome , Immunoglobulin G/blood , Immunoglobulin G/immunology
16.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39091212

ABSTRACT

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Subject(s)
Ferroptosis , Muscle, Smooth, Vascular , Plaque, Atherosclerotic , YAP-Signaling Proteins , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , YAP-Signaling Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Male , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice, Knockout , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phenylenediamines/pharmacology , Cyclohexylamines/pharmacology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics
18.
Article in English | MEDLINE | ID: mdl-39038354

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.

19.
Front Med (Lausanne) ; 11: 1408562, 2024.
Article in English | MEDLINE | ID: mdl-39015792

ABSTRACT

Introduction: Immune cells are involved in the onset and progression of Sjögren's syndrome (SS). This study explored the causal relationship between immune signature cells and SS, which has not been fully elucidated. Methods: We conducted univariate, multivariate, and bidirectional Mendelian randomization to investigate the causal relationship between 731 immunological feature characteristic cells and SS pairs and explore the interaction of immune cells in SS. Results: After false discovery rate correction, six immune cells were significantly associated with SS risk. Among them, four contributed to SS (CD24 on memory B cell, CD27 on IgD + CD24 + B cell, CD28 on CD39+ secreting CD4 Treg cell, and CD80 on CD62L + mDC); two appeared to reduce SS risk (CD3 on CD39 + CD8 + T cell and CD38 on IgD + CD38 + B cell). Pleiotropy and heterogeneity were not observed. Three immune cells exerted independent effects for SS (CD27 on IgD + CD24 + B cell, CD80 on CD62L + mDC, and CD38 on IgD + CD38 + B cell); two were risk factors (CD27 on IgD + CD24 + B cell and CD80 on CD62L + mDC); and one was a protective factor (CD38 on IgD + CD38 + B cell). Twenty-three immune cells showed a reverse causal relationship with SS. Conclusion: These findings demonstrate the influence of immune cells on SS risk and the effects of SS on immune cells, providing new clues for further research on the mechanisms underlying SS.

20.
Zhen Ci Yan Jiu ; 49(7): 678-685, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020485

ABSTRACT

OBJECTIVES: To investigate the impact of combined treatment of colorectal cancer (CRC) with electroacupuncture (EA) and capeOX (combined administration of fluorouracil, oxaliplatin and capecitabine) on the tumor volume, weight, spleen coefficient, apoptosis and ferroptosis of tumor tissue, and liver and kidney functions in nude mice with CRC, so as to explore its mechanisms underlying inhibiting CRC and alleviating toxic reactions of capeOX. METHODS: Female Balb/c nude mice were randomly assigned to 3 groups:model, capeOX, and EA+capeOX, with 8 nude mice in each group. The CRC model was established by subcutaneous injection of colon cancer cells at the right inguinal region. Nude mice of the capeOX group received intraperitoneal injection of oxaliplatin for 1 day and gavage of capecitabine from day 2 to day 7. EA (1 mA, 2 Hz/100 Hz) was applied to bilateral "Zusanli" (ST36) for 20 min, once daily for 7 days. During the interven-tion, the tumor volume and weight were measured every day, and at the end of intervention, the weight of the tumor tissue and spleen were measured, with tumor volume difference and spleen coefficient calculated. The proportion of apoptotic cells was measured by flow cytometry, and the contents of serum malondialdehyde (MDA), alanine aninotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) were detected using ELISA. The expression level of glutathione peroxidase 4 (GPX4, a key regulator for ferroptosis) protein of the tumor tissue was determined using Western blot. RESULTS: Compared to the model group, both the capeOX group and EA+capeOX group showed a decrease in the tumor volume (on day 3 and 4 in the capeOX group, and from day 2 to 7 in the EA+capeOX group) and body weight (P<0.05, on day 3 to 7 in the EA+capeOX group and on day 2 to 7 in the capeOX group), being evidently lower in the tumor volume on day 7 in the EA+capeOX than in the capeOX group (P<0.05), and evidently higher in the body weight on day 6 and 7 in the EA+capeOX group than in the capeOX group (P<0.05). In comparison with the model group, the tumor volume difference, tumor weight and spleen coefficient in both capeOX and EA+capeOX groups were significantly decreased (P<0.05), and MDA content in EA+capeOX group was significantly decreased (P<0.05), while the contents of ALT, BUN and Cr in the capeOX group, the proportion of apoptotic cells in both capeOX and EA+capeOX groups, and the GPX4 expression level in the EA+capeOX group were all significantly increased (P<0.05). The tumor volume difference, tumor weight, and contents of MDA, ALT, AST, BUN and Cr in the EA+capeOX group were markedly lower than in the capeOX group (P<0.05), while the spleen coefficient, proportion of apoptotic cells and GPX4 expression level in the EA+capeOX group were markedly higher than those in the capeOX group (P<0.05). CONCLUSIONS: EA of ST36 can enhance the effect of capeOX in inhibiting colorectal cancer growth in nude mice with CRC, which may be related with its functions in promoting tumor cell apoptosis, inhibiting ferroptosis, and modulating immune tolerance. In addition, EA can lower the side effects of capeOX in hematopoietic and immune, liver, and kidney functions.


Subject(s)
Acupuncture Points , Apoptosis , Colorectal Neoplasms , Electroacupuncture , Ferroptosis , Mice, Inbred BALB C , Mice, Nude , Animals , Mice , Ferroptosis/drug effects , Humans , Apoptosis/drug effects , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Female , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL