Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
PLoS One ; 19(5): e0296414, 2024.
Article in English | MEDLINE | ID: mdl-38771805

ABSTRACT

Vasectomized mice play a key role in the production of transgenic mice. However, vasectomy can cause great physical and psychological suffering to mice. Therefore, there is an urgent need to find a suitable replacement for vasectomized mice in the production of transgenic mice. In this study, we generated C57BL/6J mice (Piwil1 D633A-INS99, Piwil1mt/mt) with a 99-base insertion in the Miwi (Piwil1) gene using CRISPR/Cas9 technology and showed that Piwil1mt/+ heterozygous mice were normally fertile and that homozygous Piwil1mt/mt males were sterile and females were fertile. Transplantation of normal fertilized eggs into wild pseudopregnant females following mating with Piwil1mt/mt males produced no Piwil1mt/mt genotype offspring, and the number of offspring did not differ significantly from that of pseudopregnant mice following mating and breeding with ligated males. The CRISPR‒Cas9 system is available for generating Miwi-modified mice, and provides a powerful resource to replace ligated males in assisted reproduction research.


Subject(s)
Argonaute Proteins , Mice, Inbred C57BL , Pseudopregnancy , Animals , Male , Female , Mice , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Pseudopregnancy/genetics , Mice, Transgenic , CRISPR-Cas Systems
2.
Cell Discov ; 10(1): 44, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649348

ABSTRACT

Exposure to PM2.5, a harmful type of air pollution, has been associated with compromised male reproductive health; however, it remains unclear whether such exposure can elicit transgenerational effects on male fertility. Here, we aim to examine the effect of paternal exposure to real-world PM2.5 on the reproductive health of male offspring. We have observed that paternal exposure to real-world PM2.5 can lead to transgenerational primary hypogonadism in a sex-selective manner, and we have also confirmed this phenotype by using an external model. Mechanically, we have identified small RNAs (sRNAs) that play a critical role in mediating these transgenerational effects. Specifically, miR6240 and piR016061, which are present in F0 PM sperm, regulate intergenerational transmission by targeting Lhcgr and Nsd1, respectively. We have also uncovered that piR033435 and piR006695 indirectly regulate F1 PM sperm methylation by binding to the 3'-untranslated region of Tet1 mRNA. The reduced expression of Tet1 resulted in hypermethylation of several testosterone synthesis genes, including Lhcgr and Gnas, impaired Leydig cell function and ultimately led to transgenerational primary hypogonadism. Our findings provide insights into the mechanisms underlying the transgenerational effects of paternal PM2.5 exposure on reproductive health, highlighting the crucial role played by sRNAs in mediating these effects. The findings underscore the significance of paternal pre-conception interventions in alleviating the adverse effects of environmental pollutants on reproductive health.

3.
Anal Chim Acta ; 1299: 342416, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38499413

ABSTRACT

BACKGROUND: Mpox is a zoonotic disease caused by mpox virus (MPXV) infection. Since May 2022, there has been a marked increase in human mpox cases in different regions. Rash, fever, and sore throat are typical signs of mpox. However, other viruses, such as the B virus (BV), herpes simplex virus types 1 (HSV-1), herpes simplex virus types 2 (HSV-2), and varicella zoster virus (VZV), can also infect people and cause comparable symptoms. Therefore, clinical symptoms and signs alone make distinguishing MPXV from these viruses difficult. RESULTS: In this study, we combined suspension microarray technology with recombinase-aided amplification technology (RAA) to establish a high-throughput, sensitive, and quantitative method for detecting MPXV and other viruses that can cause similar symptoms. The experimental results confirmed that the technique has outstanding sensitivity, with a minimum detection limit (LOD) of 0.1 fM and a linear range of 0.3 fM to 20 pM, spanning five orders of magnitude. The approach also exhibits exquisite selectivity, as the amplified signal can only be detected when the target virus nucleic acid is present. Additionally, serum recoveries ranging from 80.52% to 119.09% suggest that the detection outcomes are generally considered reliable. Moreover, the time required for detection using this high-throughput method is very short. After DNA extraction, the detection signal amplified by isothermal amplification on the bead array can be obtained in just 1 h. SIGNIFICANCE AND NOVELTY: Our research introduces a new technique that utilizes suspension microarray technology and isothermal amplification to create a high-throughput nucleic acid assay. This innovative method offers multiple benefits compared to current techniques, such as being cost-effective, time-efficient, highly sensitive, and having high throughput capabilities. Furthermore, the assay is applicable not only for detecting MPXV and viruses with similar symptoms, but also for clinical diagnostics, food safety, and environmental monitoring, rendering it an effective tool for screening harmful microorganisms.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , DNA, Viral/genetics , DNA, Viral/analysis , Herpesvirus 3, Human/genetics , Microarray Analysis , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
4.
Neuroradiology ; 66(2): 207-216, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38001310

ABSTRACT

PURPOSE: The characteristics of surface-based morphological patterns to primary trigeminal neuralgia (PTN) are still not well understood. This study aims to screen the useful cortical indices for the prediction of PTN and the quantification of pain severity. METHODS: Fifty PTN patients and 48 matched healthy subjects enrolled in the study from March 2016 to August 2021. High-resolution T1 data were performed at 3.0 Tesla scanner and were analyzed with FreeSurfer software to detect the abnormalities of cortical mean curve (CMC), cortical thickness (CT), surface area (SA), and cortical volume (CV) in PTN patients compared to healthy controls. Logistic regression analysis was conducted to determine whether certain morphological patterns could predict PTN disorder. Then, the relationships of cortical indices to the pain characteristics in patient group were examined using linear regression model. RESULTS: Distinctive cortical alterations were discovered through surface-based analysis, including increased temporal CMC, decreased insular CT and fusiform SA, along with decreased CV in several temporal and occipital areas. Moreover, the difference of temporal CMC was greater than other cortical parameters between the two groups, and the combination of certain morphological indices was of good value in the diagnosis for PTN. Besides, CT of left insula was negatively associated with the pain intensity in PTN patients. CONCLUSION: The patients with PTN demonstrate distinctive morphological patterns in several cortical regions, which may contribute to the imaging diagnosis of this refractory disorder and be useful for the quantification of the orofacial pain. CLINICAL TRIALS: The registry name of this study in https://clinicaltrials.gov/ : Magnetic Resonance Imaging Study on Patients with Trigeminal Neuralgia (MRI-TN) https://clinicaltrials.gov/ ID: NCT02713646 A link to the full application: https://clinicaltrials.gov/ct2/results?cond=&term=NCT02713646&cntry=&state=&city=&dist= The first patient with primary trigeminal neuralgia was recruited on November 28, 2016.


Subject(s)
Trigeminal Neuralgia , Humans , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Pain/complications , Trigeminal Neuralgia/diagnostic imaging , Trigeminal Neuralgia/complications
5.
J Exp Clin Cancer Res ; 42(1): 245, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37740232

ABSTRACT

Macrophages are highly plastic in different tissues and can differentiate into functional subpopulations under different stimuli. Tumor-associated macrophages (TAMs) are one of the most important innate immune cells implicated in the establishment of an immunosuppressive tumor microenvironment (TME). Recent evidence pinpoints the critical role of metabolic reprogramming in dictating pro-tumorigenic functions of TAMs. Both tumor cells and macrophages undergo metabolic reprogramming to meet energy demands in the TME. Understanding the metabolic rewiring in TAMs can shed light on immune escape mechanisms and provide insights into repolarizing TAMs towards anti-tumorigenic function. Here, we discuss how metabolism impinges on the functional divergence of macrophages and its relevance to macrophage polarization in the TME.


Subject(s)
Macrophages , Tumor-Associated Macrophages , Humans , Carcinogenesis , Immunosuppressive Agents , Macrophage Activation , Tumor Microenvironment
6.
Nat Commun ; 14(1): 5267, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644029

ABSTRACT

The piRNA pathway is essential for female fertility in golden hamsters and likely humans, but not in mice. However, the role of individual PIWIs in mammalian reproduction remains poorly understood outside of mice. Here, we describe the expression profiles, subcellular localization, and knockout-associated reproductive defects for all four PIWIs in golden hamsters. In female golden hamsters, PIWIL1 and PIWIL3 are highly expressed throughout oogenesis and early embryogenesis, while knockout of PIWIL1 leads to sterility, and PIWIL3 deficiency results in subfertility with lagging zygotic development. PIWIL1 can partially compensate for TE silencing in PIWIL3 knockout females, but not vice versa. PIWIL1 and PIWIL4 are the predominant PIWIs expressed in adult and postnatal testes, respectively, while PIWIL2 is present at both stages. Loss of any PIWI expressed in testes leads to sterility and severe but distinct spermatogenesis disorders. These findings illustrate the non-redundant regulatory functions of PIWI-piRNAs in gametogenesis and early embryogenesis in golden hamsters, facilitating study of their role in human fertility.


Subject(s)
Craniocerebral Trauma , Infertility , Adult , Cricetinae , Humans , Male , Female , Animals , Mice , Mesocricetus , Gametogenesis , Oogenesis/genetics , Spermatogenesis/genetics , Piwi-Interacting RNA , Argonaute Proteins/genetics
7.
BMC Neurol ; 23(1): 140, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013466

ABSTRACT

BACKGROUND AND OBJECTIVE: Electroencephalography (EEG) and neuroimaging measurements have been highly encouraged to be applied in clinics of disorders of consciousness (DOC) to improve consciousness detection. We tested the relationships between neural complexity measured on EEG and residual consciousness levels in DOC patients. METHODS: Resting-state EEG was recorded from twenty-five patients with DOC. Lempel-Ziv complexity (LZC) and permutation Lempel-Ziv complexity (PLZC) were measured on the EEG, and their relationships were analyzed with the consciousness levels of the patients. RESULTS: PLZC and LZC values significantly distinguished patients with a minimally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/UWS), and healthy controls. PLZC was significantly correlated with the Coma Recovery Scale-Revised (CRS-R) scores of DOC patients in the global brain, particularly in electrodes locating in the anterior and posterior brain regions. Patients with higher CRS-R scores showed higher PLZC values. The significant difference in PLZC values between MCS and VS/UWS was mainly located in the bilateral frontal and right hemisphere regions. CONCLUSION: Neural complexity measured on EEG correlates with residual consciousness levels of DOC patients. PLZC showed higher sensitivity than LZC in the classification of consciousness levels.


Subject(s)
Consciousness Disorders , Consciousness , Humans , Consciousness Disorders/diagnosis , Brain/diagnostic imaging , Persistent Vegetative State/diagnosis , Coma , Electroencephalography/methods
8.
Int J Cancer ; 153(5): 918-931, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36843262

ABSTRACT

Oncogene-induced hyper-proliferation in cancer cells is accompanied by the onset of different stresses, including DNA-replication stress, metabolic stress and oxidative stress. Excessive accumulation of reactive oxygen species (ROS) plays a pivotal and contradictory role in tumor progression. ROS dictates a multitude of cell signaling pathways to facilitate the malignant transformation of tumor cells. In the meantime, oxidative burden in tumor cells mandates reinforcing antioxidant capacity to mitigate detrimental damages. The addiction to oxidative stress and increased iron demands in cancer cells also impinges on the sensitivity of ferroptosis. Targeting redox homeostasis and ferroptosis to overcome drug resistance in cancer treatment has become an attractive research topic. However, the roles of oncogenic signaling in redox regulation and ferroptosis have not been comprehensively discussed. In this review, we summarize current knowledge regarding the interplay between redox regulation and ferroptosis in the context of cancer biology. We emphasize the implication of oncogenic signaling in redox homeostasis and ferroptosis regulation. We also provide an overview of strategies targeting oxidative stress and ferroptosis in cancer treatment.


Subject(s)
Ferroptosis , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress , Neoplasms/pathology , Signal Transduction
9.
Anal Chem ; 94(27): 9724-9731, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35762828

ABSTRACT

As a golden partner of recombinase polymerase amplification (RPA), CRISPR/Cas12a has been proven to solve the false-positive problem caused by nonspecific amplification perfectly; meanwhile, its trans-cleave activity has further enhanced the sensitivity. However, the solution transfer operation after tube cap opening greatly increases the risk of aerosol contamination of amplicon, which is inconsistent with point-of-care (POC) diagnostics requirements. This study proposes a photoactivated CRISPR/Cas12a strategy to achieve one-pot high-sensitivity nucleic acid detection. Using photocleavable complementary ssDNA to block crRNA, RPA amplification can smoothly pass through the exponential interval without being affected by activated Cas12a in the critical early stage. After enough amplicons were produced, the Cas12a test was activated by short bursts of ultraviolet radiation at 365 nm. This one-pot method achieved a sensitivity of 2.5 copies within 40 min. This simple and sensitive one-pot method can effectively avoid amplicon contamination and lower the threshold for molecular diagnostics in POC.


Subject(s)
CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/genetics , Nucleic Acid Amplification Techniques/methods , Recombinases , Ultraviolet Rays
10.
Environ Sci Pollut Res Int ; 29(8): 12085-12099, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34558051

ABSTRACT

2,4,6-Tribromophenol (TBP, CAS No. 118-79-6), the most widely produced brominated phenol, is frequently detected in environmental components. The detection of TBP in human bodies has earned great concerns about its adverse effects on human beings, especially for early embryonic development. Here, we optimized the mouse embryo in vitro culture (IVC) system for early post-implantation embryos and employed it to determine the embryotoxicity of TBP. With this new research model, we revealed the dose-dependent toxic effects of TBP on mouse embryos from peri-implantation to egg cylinder stages. Furthermore, TBP exposure inhibited the differentiation and survival of epiblast (EPI) cells and extraembryonic endoderm (ExEn) cells, while those of extraembryonic ectoderm (ExEc) cells were not influenced. These results implied that TBP might inhibit embryonic development by influencing the generation of three primary germ layers and fetal membranes (the amnion, chorionic disk, umbilical cord, and yolk sac). In summary, we showed a proof of concept for applying mouse embryo IVC system as a novel research model for studying mammalian embryonic toxicology of environmental pollutants. This study also demonstrated the toxicity of TBP on early embryonic development of mammals.


Subject(s)
Embryo, Mammalian , Embryonic Development , Animals , Cell Differentiation , Female , Mice , Pregnancy
11.
Nat Cell Biol ; 23(9): 1013-1022, 2021 09.
Article in English | MEDLINE | ID: mdl-34489574

ABSTRACT

Piwi-interacting RNAs (piRNAs) are predominantly expressed in germ cells and function in gametogenesis in various species. However, Piwi-deficient female mice are fertile and mouse oocytes express a panel of small RNAs that do not appear to be widely representative of mammals. Thus, the function of piRNAs in mammalian oogenesis remains largely unclear. Here, we generated Piwil1- and Mov10l1-deficient golden hamsters and found that all female and male mutants were sterile, with severe defects in embryogenesis and spermatogenesis, respectively. In Piwil1-deficient female hamsters, the oocytes and embryos displayed aberrant transposon accumulation and extensive transcriptomic dysregulation, and the embryos were arrested at the two-cell stage with impaired zygotic genome activation. Moreover, PIWIL1-piRNAs exert a non-redundant function in silencing endogenous retroviruses in the oocytes and embryos. Together, our findings demonstrate that piRNAs are indispensable for generating functional germ cells in golden hamsters and show the value of this model species for piRNA studies in gametogenesis, especially those related to female infertility.


Subject(s)
Embryonic Development/physiology , Germ Cells/metabolism , Oocytes/metabolism , RNA, Small Interfering/genetics , Animals , Argonaute Proteins/genetics , Cricetinae , Fertility/physiology , Male , Mesocricetus/genetics , Spermatogenesis/genetics , Testis/metabolism
12.
Environ Sci Pollut Res Int ; 28(39): 55716-55724, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34138425

ABSTRACT

Phosphorus (P) is highly related to water quality during shrimp culture. Recognizing P transformation in pond-based cultures is crucial for sustainable and healthy aquaculture. However, P transformation remains unclear in the sediment of Penaeus vannamei cultures, although commercial species have been pervasive worldwide. To determine P transformation, samples with different culture years were collected from Zhejiang province, China. Sequential chemical extraction was applied to reveal the composition of inorganic P, while phosphatase activity was used to evaluate the biomineralization of organic P. The results indicated that the consecutive culture of Penaeus vannamei promoted the dissolution potential of sedimentary P. This was attributed to anoxic iron reduction that increased the formation of loosely bound P and Fe (II)-P. However, this phenomenon was dominated by biomineralization, which transformed the organic P to inorganic P. The results suggested that consecutive culture changed the microbial community structure in the sediment as well as the gene functions. The Shannon Wiener index showed that increasing the culture duration significantly decreased the stability of the microbial community. Overall, this study suggests that long-term consecutive culture of Penaeus vannamei may increase the P release potential of the sediment, which increases the risk of pond eutrophication.


Subject(s)
Microbiota , Penaeidae , Animals , China , Phosphorus
13.
Nat Aging ; 1(11): 1010-1023, 2021 11.
Article in English | MEDLINE | ID: mdl-37118338

ABSTRACT

Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.


Subject(s)
Ovary , Signal Transduction , Female , Mice , Animals , Ovary/metabolism , Phosphorylation , Oocytes , Fertility , Mammals
14.
J Endocrinol ; 248(2): 249-264, 2021 02.
Article in English | MEDLINE | ID: mdl-33295883

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a major severe ovary disorder affecting 5-10% of reproductive women around the world. PCOS can be considered a metabolic disease because it is often accompanied by obesity and diabetes. Brown adipose tissue (BAT) contains abundant mitochondria and adipokines and has been proven to be effective for treating various metabolic diseases. Recently, allotransplanted BAT successfully recovered the ovarian function of PCOS rat. However, BAT allotransplantation could not be applied to human PCOS; the most potent BAT is from infants, so voluntary donors are almost inaccessible. We recently reported that single BAT xenotransplantation significantly prolonged the fertility of aging mice and did not cause obvious immunorejection. However, PCOS individuals have distinct physiologies from aging mice; thus, it remains essential to study whether xenotransplanted rat BAT can be used for treating PCOS mice. In this study, rat-to-mouse BAT xenotransplantation, fortunately, did not cause severe rejection reaction, and significantly recovered ovarian functions, indicated by the recovery of fertility, oocyte quality, and the levels of multiple essential genes and kinases. Besides, the blood biochemical index, glucose resistance, and insulin resistance were improved. Moreover, transcriptome analysis showed that the recovered PCOS F0 mother following BAT xenotransplantation could also benefit the F1 generation. Finally, BAT xenotransplantation corrected characteristic gene expression abnormalities found in the ovaries of human PCOS patients. These findings suggest that BAT xenotransplantation could be a novel therapeutic strategy for treating PCOS patients.


Subject(s)
Adipose Tissue, Brown/transplantation , Infertility, Female/surgery , Ovary/metabolism , Polycystic Ovary Syndrome/surgery , Animals , Female , Fertility , Humans , Infertility, Female/blood , Mice, Inbred BALB C , Oocytes/cytology , Polycystic Ovary Syndrome/blood , Rats, Sprague-Dawley , Transcriptome , Transplantation, Heterologous
15.
J Int Med Res ; 48(12): 300060520967778, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33342339

ABSTRACT

INTRODUCTION: To evaluate a next-generation sequencing (NGS) workflow in the screening and diagnosis of thalassemia. METHODS: In this prospective study, blood samples were obtained from people undergoing genetic screening for thalassemia at our centre in Guangzhou, China. Genomic DNA was polymerase chain reaction (PCR)-amplified and sequenced using the Ion Torrent system and results compared with traditional genetic analyses. RESULTS: Of the 359 subjects, 148 (41%) were confirmed to have thalassemia. Variant detection identified 35 different types including the most common. Identification of the mutational sites by NGS were consistent with those identified by Sanger sequencing and Gap-PCR. The sensitivity and specificities of the Ion Torrent NGS were 100%. In a separate test of 16 samples, results were consistent when repeated ten times. CONCLUSION: Our NGS workflow based on the Ion Torrent sequencer was successful in the detection of large deletions and non-deletional defects in thalassemia with high accuracy and repeatability.


Subject(s)
High-Throughput Nucleotide Sequencing , Thalassemia , China , Genetic Testing , Humans , Mutation , Prospective Studies , Sequence Analysis, DNA , Thalassemia/diagnosis , Thalassemia/genetics
16.
Clin Lab ; 66(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32776744

ABSTRACT

BACKGROUND: The aim of the study is to evaluate the significance of the Architect anti-HCV signal to cutoff (S/CO) ratios for predicting hepatitis C viremia and determine the optimal S/Co ratio value for Architect anti-HCV assay. METHODS: The results of patients who underwent HCV RNA quantitative assays because of positive anti-HCV from January 2015 to August 2019 were retrospectively analyzed, including S/Co ratio values, HCV RNA quantitative results, alanine aminotransferase (ALT), and aspartate transaminase (AST) values. Binary logistic regression and Spearman's correlation coefficient were used to analyze the collected data. Receiver-operating characteristics curve (ROC) was applied to analyze the predicting values of the indexes. RESULTS: In total, 811 patients were included in our study and HCV viremia was detected in 342 (42.1%) patients. There is no correlation between anti-HCV S/CO ratio and HCV RNA level. The samples with an S/Co ratio between 1 and 4 (271/271, 100%) were all HCV RNA negative. The area under the ROC curve of anti-HCV S/CO ratio was 0.8714 and the maximal Youden index was 0.681 at an optimal cutoff S/CO ratio value of 8.99. CONCLUSIONS: With the cutoff value of 1.0, the Architect anti-HCV assay showed excellent sensitivity but poor specificity in predicting HCV viremia. An S/Co ratio of 8.99 was optimal for further confirmation testing of HCV viremia.


Subject(s)
Hepatitis C , Viremia , Hepacivirus/genetics , Hepatitis C/diagnosis , Hepatitis C Antibodies , Humans , RNA, Viral/genetics , Retrospective Studies , Sensitivity and Specificity , Viremia/diagnosis
17.
PeerJ ; 8: e9629, 2020.
Article in English | MEDLINE | ID: mdl-32821546

ABSTRACT

Testis expressed gene 33 (Tex33) is a recently reported testis-specific gene and it is evolutionarily conserved in vertebrates. The Tex33 expression is found in cytoplasm of round spermatids in Mus musculus. However, the in vivo function of Tex33 remains unknown. In this study, we made a 62bp in frame deletion on Exon2 of Tex33 gene by CRISPR/Cas9 in C57B/L6 mouse, which cause frame shift mutation of Tex33 gene. Tex33 -/-adult male were fertile, and there is no significant change on litter size compared with male wildtype (Tex33 +/+) adult. Besides, no overt differences were found in testis/body weight ratios, testicular/epididymal tissue morphology, sperm counts, sperm morphology and spermatozoa motility in adult Tex33-/- male mice (N = 3), in comparison with Tex33 +/+ adult (N = 3). TUNEL assay also indicates the germ cells apoptosis ratio was not significantly changed in adult Tex33-/- adult male mouse testis (N = 3), compared with adult Tex33+/+ male (N = 3). Importantly, the first wave of elongating spermatids formation happens in 5w old mice. We find that the first wave of spermiogenesis is not disrupted in both 5-week-old Tex33+/+ and Tex33 -/-male mouse testes and three hallmarks of spermatogenesis, PLZF,γ-H2AX and TNP1, are all detectable in seminiferous tubule. All results indicate that Tex33 is a redundant gene to spermatogenesis. This study can help other researchers avoid repetitive works on redundant genes.

18.
Cell Prolif ; 53(6): e12825, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32391621

ABSTRACT

OBJECTIVES: Little is known about the roles of integral membrane proteins beyond channels, carriers or receptors in meiotic oocytes. The transmembrane protein Fam70A was previously identified as a likely "female fertility factor" in Fox3a-knockout mouse ovaries where almost all follicles underwent synchronous activation and the mice became infertile very early. However, whether Fam70A functions in oocyte meiosis remains unknown. Therefore, the present study aimed to address this question. MATERIALS AND METHODS: Co-immunoprecipitation, immunogold labelling-electron microscopy, co-localization and yeast two-hybrid assays were used to verify the interaction. Antibody or small interfering RNA transfection was used to deplete the proteins. Immunofluorescence, immunohistochemistry and live tracker staining were used to examine the localization or characterize phenotypes. Western blot was used to examine the protein level. RESULTS: Fam70A was enriched in oocyte membranes important for normal meiosis. Fam70A depletion remarkably disrupted spindle assembly, chromosome congression and first polar body extrusion, which subsequently increased aneuploidy and abnormal fertilization. Moreover, Fam70A directly bound Wnt5a, the most abundant Wnt member within oocytes. Depletion of either Fam70A or Wnt5a remarkably increased adenomatous polyposis coli (APC), which stabilizes active ß-catenin and microtubules. Consequently, depletion of either Fam70A or Wnt5a remarkably increased p-ß-catenin (inactive form) and acetylated tubulin, while APC knockdown remarkably decreased these two. Furthermore, Fam70A depletion remarkably reduced Akt phosphorylation. CONCLUSIONS: Fam70A regulates meiosis and quality of mouse oocytes through both canonical and non-canonical Wnt5a signalling pathways.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Meiosis , Membrane Proteins/metabolism , Oocytes/metabolism , Wnt-5a Protein/metabolism , Adenomatous Polyposis Coli Protein/metabolism , Animals , Mice , Microtubules/metabolism , NIH 3T3 Cells , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism
19.
Acta Obstet Gynecol Scand ; 99(6): 731-743, 2020 06.
Article in English | MEDLINE | ID: mdl-32166736

ABSTRACT

INTRODUCTION: The objective of this study was to report on the clinical performance of non-invasive prenatal testing (NIPT) for trisomies 21, 18 and 13 in twin pregnancies and to define the performance of NIPT by combining our cohort study results with published studies in a systematic meta-analysis. MATERIAL AND METHODS: A cohort study was carried out in the First Affiliated Hospital of Sun Yat-sen University and Kanghua Hospital. Meanwhile, searches of PubMed, EMBASE, The Cochrane Library and Web of Science for all relevant peer-reviewed articles were performed with a restriction to English language publication before 15 June 2019. Quality assessments were conducted with the Quality Assessment Tool for Diagnostic Accuracy Studies-2 checklist. Data analysis, heterogeneity, subgroup analysis and publication bias were carried out using META-DISC 1.4 and STATA 12.0. RESULTS: In all, 141 twin pregnancies included in our cohort study; confirmation revealed one true-positive case for trisomy 21 and 140 true-negative cases. The sensitivity and specificity for trisomy 21 by NIPT were both 100%. Twenty-two eligible studies were enrolled in this meta-analysis together with our study. There were 199 cases of trisomy 21, 58 cases of trisomy 18, 14 cases of trisomy 13 and 6347 cases of euploids in total. For trisomy 21, NIPT showed the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were 0.99, 1.00, 145.81, 0.06 and 1714.09, respectively. For trisomy 18, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were 0.88, 1.00, 200.98, 0.19 and 483.68, respectively. CONCLUSIONS: The performance of NIPT for trisomy 21 in twin pregnancy was excellent and it was similar to that reported in singleton pregnancy. However, due to publication bias (trisomy 18) and small number of cases (trisomy 13), accurate assessment of the predictive performance of NIPT for trisomies 18 and 13 could not be achieved.


Subject(s)
Down Syndrome/diagnosis , Noninvasive Prenatal Testing , Pregnancy, Twin , Trisomy 13 Syndrome/diagnosis , Trisomy 18 Syndrome/diagnosis , Adolescent , Adult , Cohort Studies , Female , Humans , Likelihood Functions , Pregnancy , Sensitivity and Specificity , Young Adult
20.
Cell Prolif ; 53(3): e12769, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32003502

ABSTRACT

OBJECTIVES: M-phase phosphoprotein 6 (MPP6) is important for 5.8S pre-rRNA maturation in somatic cells and was screened as a female fertility factor. However, whether MPP6 functions in oocyte meiosis and fertility is not yet known. We aimed to address this. MATERIALS AND METHODS: Mouse oocytes with surrounded nucleus (SN) or non-surrounded nucleus (NSN) were used for all experiments. Peptide nanoparticle-mediated antibody transfection was used to deplete MPP6. Immunofluorescence staining, immunohistochemistry and live tracker staining were used to examine MPP6 localization and characterize phenotypes after control or MPP6 depletion. High-fidelity PCR and fluorescence in situ hybridization (FISH) were used to examine the localization and level of 5.8S rRNAs. Western blot was used to examine the protein level. MPP6-EGFP mRNA microinjection was used to do the rescue. RESULTS: MPP6 was enriched within ovaries and oocytes. MPP6 depletion significantly impeded oocyte meiosis. MPP6 depletion increased 5.8S pre-rRNA. The mRNA levels of MPP6 and 5.8S rRNA decreased within ageing oocytes, and MPP6 mRNA injection partially increased 5.8S rRNA maturation and improved oocyte quality. CONCLUSIONS: MPP6 is required for 5.8S rRNA maturation, meiosis and quality control in mouse oocytes, and MPP6 level might be a marker for oocyte quality.


Subject(s)
Cell Cycle Proteins/metabolism , Oocytes/cytology , RNA, Ribosomal, 5.8S/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Division , Cells, Cultured , Cellular Senescence , Female , Fertility , Fertilization in Vitro , Male , Meiosis , Mice , Mice, Inbred ICR , Oocytes/metabolism , Oocytes/ultrastructure , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...