Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.473
Filter
1.
Neural Regen Res ; 20(1): 159-173, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767484

ABSTRACT

Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.

2.
Clin Respir J ; 18(5): e13769, 2024 May.
Article in English | MEDLINE | ID: mdl-38736274

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. This study aimed to establish novel multiclassification prediction models based on machine learning (ML) to predict the probability of malignancy in pulmonary nodules (PNs) and to compare with three published models. METHODS: Nine hundred fourteen patients with PNs were collected from four medical institutions (A, B, C and D), which were organized into tables containing clinical features, radiologic features and laboratory test features. Patients were divided into benign lesion (BL), precursor lesion (PL) and malignant lesion (ML) groups according to pathological diagnosis. Approximately 80% of patients in A (total/male: 632/269, age: 57.73 ± 11.06) were randomly selected as a training set; the remaining 20% were used as an internal test set; and the patients in B (total/male: 94/53, age: 60.04 ± 11.22), C (total/male: 94/47, age: 59.30 ± 9.86) and D (total/male: 94/61, age: 62.0 ± 11.09) were used as an external validation set. Logical regression (LR), decision tree (DT), random forest (RF) and support vector machine (SVM) were used to establish prediction models. Finally, the Mayo model, Peking University People's Hospital (PKUPH) model and Brock model were externally validated in our patients. RESULTS: The AUC values of RF model for MLs, PLs and BLs were 0.80 (95% CI: 0.73-0.88), 0.90 (95% CI: 0.82-0.99) and 0.75 (95% CI: 0.67-0.88), respectively. The weighted average AUC value of the RF model for the external validation set was 0.71 (95% CI: 0.67-0.73), and its AUC values for MLs, PLs and BLs were 0.71 (95% CI: 0.68-0.79), 0.98 (95% CI: 0.88-1.07) and 0.68 (95% CI: 0.61-0.74), respectively. The AUC values of the Mayo model, PKUPH model and Brock model were 0.68 (95% CI: 0.62-0.74), 0.64 (95% CI: 0.58-0.70) and 0.57 (95% CI: 0.49-0.65), respectively. CONCLUSIONS: The RF model performed best, and its predictive performance was better than that of the three published models, which may provide a new noninvasive method for the risk assessment of PNs.


Subject(s)
Lung Neoplasms , Machine Learning , Multiple Pulmonary Nodules , Aged , Female , Humans , Male , Middle Aged , Decision Trees , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Predictive Value of Tests , Retrospective Studies , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Support Vector Machine , Tomography, X-Ray Computed/methods
3.
Nano Lett ; 24(20): 5975-5983, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726841

ABSTRACT

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

4.
Environ Toxicol Chem ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695729

ABSTRACT

Persistent organic pollutants pose a great threat to amphibian populations, but information on the bioaccumulation of contaminants in amphibians remains scarce. To examine the tissue distribution and maternal transfer of organic halogenated pollutants (OHPs) in frogs, seven types of tissues from black-spotted frog (muscle, liver, kidney, stomach, intestine, heart, and egg) were collected from an e-waste-polluted area in South China. Among the seven frog tissues, median total OHP concentrations of 2.3 to 9.7 µg/g lipid weight were found (in 31 polychlorinated biphenyl [PCB] individuals and 15 polybrominated diphenyl ether [PBDE], dechlorane plus [syn-DP and anti-DP], bexabromobenzene [HBB], polybrominated biphenyl] PBB153 and -209], and decabromodiphenyl ethane [DBDPE] individuals). Sex-specific differences in contaminant concentration and compound compositions were observed among the frog tissues, and eggs had a significantly higher contaminant burden on the whole body of female frogs. In addition, a significant sex difference in the concentration ratios of other tissues to the liver was observed in most tissues except for muscle. These results suggest that egg production may involve the mobilization of other maternal tissues besides muscle, which resulted in the sex-specific distribution. Different parental tissues had similar maternal transfer mechanisms; factors other than lipophilicity (e.g., molecular size and proteinophilic characteristics) could influence the maternal transfer of OHPs in frogs. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

5.
Free Radic Biol Med ; 220: 111-124, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697493

ABSTRACT

Hepatocellular carcinoma (HCC) is a global public health problem with increased morbidity and mortality. Agrimol B, a natural polyphenol, has been proved to be a potential anticancer drug. Our recent report showed a favorable anticancer effect of agrimol B in HCC, however, the mechanism of action remains unclear. Here, we found agrimol B inhibits the growth and proliferation of HCC cells in vitro as well as in an HCC patient-derived xenograft (PDX) model. Notably, agrimol B drives autophagy initiation and blocks autophagosome-lysosome fusion, resulting in autophagosome accumulation and autophagy arrest in HCC cells. Mechanistically, agrimol B downregulates the protein level of NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1) through caspase 3-mediated degradation, leading to mitochondrial reactive oxygen species (mROS) accumulation and autophagy arrest. NDUFS1 overexpression partially restores mROS overproduction, autophagosome accumulation, and growth inhibition induced by agrimol B, suggesting a cytotoxic role of agrimol B-induced autophagy arrest in HCC cells. Notably, agrimol B significantly enhances the sensitivity of HCC cells to sorafenib in vitro and in vivo. In conclusion, our study uncovers the anticancer mechanism of agrimol B in HCC involving the regulation of oxidative stress and autophagy, and suggests agrimol B as a potential therapeutic drug for HCC treatment.

6.
FEBS J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712529

ABSTRACT

Docetaxel (Doc) currently serves as the primary first-line treatment for patients with castrate-resistant prostate cancer (CRPC). Erastin, a small molecule compound, can trigger inhibition of the cystine-glutamate reverse transport system and other pathways, leading to iron-dependent cell death (ferroptosis). Beyond its role in inducing cancer cell death, erastin demonstrates potential when combined with chemotherapy drugs to heighten cancer cell drug susceptibility. However, the augmentation by erastin of the effects of Doc treatment on prostate cancer, and the underlying mechanisms involved, remain unclear. In the present study, we determined the role and the underlying molecular mechanism of erastin against CRPC. The results showed that CRPC cell lines were resistant to Doc, and the expression of ferroptosis-related factors in drug-resistant cell lines was downregulated. Erastin, in synergy with Doc, exerts a pro-apoptotic effect. Erastin significantly inhibited the activity of ATP-binding cassette subfamily B member 1 (ABCB1) but did not change its protein expression and localization. Finally, in mice, erastin treatment dramatically reduced tumor growth in vivo. Taken together, our findings demonstrate that erastin enhances Doc-induced apoptosis to a certain extent and reverses Doc resistance in prostate cancer by inhibiting the activity of multidrug-resistant protein ABCB1.

7.
Sci Prog ; 107(2): 368504241232537, 2024.
Article in English | MEDLINE | ID: mdl-38567422

ABSTRACT

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Carcinoma/diagnostic imaging , Epithelium , Neck
8.
Opt Express ; 32(6): 9332-9342, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571170

ABSTRACT

We theoretically and experimentally verify that, the bidirectional hybrid-mode pumping scheme can address the optimization problem of trade-off between high gain and low differential modal gain (DMG) of four-mode erbium-doped fiber amplifier (4M-EDFA), in comparison with traditional both forward and backward hybrid-mode pumping scheme. It is noticed that, when the total pump power is fixed, the bidirectional hybrid-mode pumping scheme can not only achieve higher gain, but also suppress DMG due to different overlap integrals for the forward and backward pumping schemes. The bidirectional hybrid-mode pumped 4M-EDFA is developed with the forward pumping at LP02 mode and the backward pumping at LP21 mode, under a pump power ratio of 30%:70%. Thus, we can achieve an average gain of up to 21.16 dB and a low DMG of 0.43 dB at 1550 nm, and an average gain of up to 20.64 dB with a DMG of less than 1.6 dB over the C-band. In particular, the bidirectional hybrid-mode pumping scheme allows us to tailor the gain characteristics of the few-mode erbium-doped fiber amplifiers (FM-EDFAs), by adjusting the power ratio between forward and backward pumps.

9.
J Asian Nat Prod Res ; : 1-7, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572987

ABSTRACT

A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.

10.
Phytomedicine ; 129: 155608, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38642413

ABSTRACT

BACKGROUND: Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS: The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS: Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION: Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.

11.
Environ Res ; 252(Pt 4): 118915, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38615792

ABSTRACT

Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.

12.
Eur J Med Chem ; 271: 116410, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38615409

ABSTRACT

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.


Subject(s)
Amides , Anti-Bacterial Agents , Drug Discovery , Molecular Docking Simulation , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Amides/pharmacology , Amides/chemistry , Amides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Animals
13.
Int Immunopharmacol ; 133: 112079, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615376

ABSTRACT

Porcine rotavirus (PoRV) poses a threat to the development of animal husbandry and human health, leading to substantial economic losses. VP6 protein is the most abundant component in virus particles and also the core structural protein of the virus. Firstly, this study developed an antibiotic-resistance-free, environmentally friendly expression vector, named asd-araC-PBAD-alr (AAPA). Then Recombinant Lactiplantibacillus plantarum (L. plantarum) strains induced by arabinose to express VP6 and VP6-pFc fusion proteins was constructed. Subsequently, This paper discovered that NC8/Δalr-pCXa-VP6-S and NC8/Δalr-pCXa-VP6-pFc-S could enhance host immunity and prevent rotavirus infection in neonatal mice and piglets. The novel recombinant L. plantarum strains constructed in this study can serve as oral vaccines to boost host immunity, offering a new strategy to prevent PoRV infection.


Subject(s)
Capsid Proteins , Lactobacillus plantarum , Swine Diseases , Animals , Swine , Lactobacillus plantarum/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Mice , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Antigens, Viral/immunology , Rotavirus/immunology , Mice, Inbred BALB C , Animals, Newborn
14.
Heliyon ; 10(8): e29502, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660282

ABSTRACT

Kaposi's sarcoma (KS) is the second most common tumor in human immunodeficiency virus (HIV) infected patients worldwide. While many miRNAs have been confirmed to be involved in KS biological processes, no relevant studies have combined miRNA and mRNA expression profiles using KS patient tissue biopsies. In this study, we performed transcriptome sequencing on tumor and normal tissues from four KS patients and identified differentially expressed mRNA and miRNA, further performed target gene prediction and enrichment analysis. 19,551 target-mRNAs were identified by predicting 106 miRNAs, with 553 overlapping with 571 significantly differentially expressed mRNAs. Enrichment analysis showed significant involvement of the Ubiquitin-mediated proteolysis pathway. Additionally, the miRNA-mRNA interaction network was established, and the topological score of Cytohubba's algorithm was calculated for comparison with three other datasets. The Mutual Clustering Coefficient (MCC) scoring ranking placed ZBTB34, NFIB, and RORA as the top three mRNAs, while hsa-miR-16-5p, hsa-miR-27a-3p, hsa-miR-340-5p, hsa-miR-182-5p, and hsa-miR-186-5p ranked as the top five miRNAs. Hsa-miR-101-3p is the only miRNA that appears both in the top 10 MCC scores and at the intersection of the other two datasets. Finally, qRT-PCR was used to validate the findings at the cellular level. In summary, the miRNA analysis results indicated that hsa-miR-101-3p could be used as a potential diagnostic or therapeutic marker in future studies. Moreover, the mRNA analysis results suggested that the histone binding pathways involved in mRNAs and ubiquitin-related biological processes were closely associated with KS and could serve as promising biomarkers for the diagnosis and treatment of this disease.

15.
Acta Neurol Belg ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669003

ABSTRACT

BACKGROUND: Hypertension is a recognized risk factor for Parkinson's disease (PD). The renin-angiotensin system (RAS) inhibitors are widely used to treat hypertension. However, the association of RAS inhibitor use with PD has still been an area of controversy. METHODS: Thus, we conducted a meta-analysis to investigate the relationship between RAS inhibitor use and PD. PUBMED and EMBASE databases were searched for articles published up to Oct 2023. All studies that examined the relationship between RAS inhibitor use and the incidence of PD were included. RESULTS: Seven studies with total 3,495,218 individuals met our inclusion criteria for this meta-analysis. Overall, RAS inhibitor use was associated with a reduction in PD risk (OR = 0.88, 95%CI = 0.79-0.98) compared with the controls. When restricted the analysis to individuals with RAS inhibitor use indication, RAS inhibitor exposure was also associated with a decreased risk of PD (OR = 0.76, 95%CI = 0.62-0.92). Pooled results of cohort studies also did support a protective role of angiotensin converting enzyme inhibitors (ACEIs) (OR = 0.97, 95%CI = 0.89-1.07) users and angiotensin II receptor blockers (ARBs) (OR = 0.8, 95%CI = 0.63-1.02) in PD. CONCLUSION: Overall, RAS inhibitor use as a class is associated with a reduction in PD risk. However, the findings of ACEIs and ARBs may be limited by small sample size. Future well-designed studies considering the classification by inhibitor type, duration, dose, or property of BBB penetration of RAS inhibitors are needed to clarify the contribution of these exposure parameters on the risk of PD.

16.
J Org Chem ; 89(9): 6117-6125, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38654588

ABSTRACT

The first paired electrolysis-enabled arylation of quinoxalin-2(1H)-ones was achieved using cyanoarenes as the arylation reagents. A variety of 3-arylquinoxalin-2(1H)-ones with various important functional groups were obtained in moderate to good yields under metal- and chemical oxidant-free conditions. With a pair of reductive and oxidative processes occurring among the substrates and reaction intermediates, the power consumption can be dramatically reduced.

17.
J Int Med Res ; 52(4): 3000605241244763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656272

ABSTRACT

A high systolic/diastolic (S/D) ratio of umbilical cord blood is a manifestation of intrauterine hypoxia. However, the clinical significance of a persistently decreased S/D ratio of umbilical cord blood has not been reported. We report eight cases of a persistently decreased S/D ratio of umbilical cord blood, with two cases of umbilical thrombus, five cases of excessive torsion, and one case of a true cord knot. Fetuses with a persistently decreased S/D ratio of umbilical cord blood may be at risk, and it may be an important indication of umbilical cord lesions.


Subject(s)
Diastole , Fetal Blood , Umbilical Cord , Adult , Female , Humans , Male , Pregnancy , Fetal Hypoxia/diagnosis , Fetal Hypoxia/physiopathology , Systole/physiology , Thrombosis/diagnosis , Ultrasonography, Prenatal , Umbilical Cord/pathology
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38619320

ABSTRACT

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Subject(s)
Epithelial Cells , Glucose , Intestine, Small , Sodium-Glucose Transporter 1 , Trichothecenes , Animals , Trichothecenes/toxicity , Swine , Glucose/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Cell Line , Intestine, Small/drug effects , Inflammation/chemically induced , Cytokines/metabolism , Cytokines/genetics , Biological Transport/drug effects , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Apoptosis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
19.
Biochem Pharmacol ; : 116236, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670437

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.

20.
Plant Dis ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679592

ABSTRACT

Dragon fruit (Selenicereus monacanthus), renowned for its economic value and dual utility in both culinary and medicinal applications, is predominantly cultivated in China. In July 2023, a stem spot disease was found on dragon fruit ("Zi honglong" cultivar) plants with 37% incidence, in Huajiang Town (N25°40', E105°39'), Guanling County, Anshun City, Guizhou Province. The symptoms appeared as yellow spots surrounded by watery stains, then the spots expanded to suborbicular, which finally led stem to wither. Twelve symptomatic stem samples were collected in a 1.3-hectare plantation and cut into small pieces (5 mm × 5 mm), sterilized the surface with 75% ethanol for 30 seconds, washed 3 times with disinfected distilled water, moved to potato dextrose agar (PDA) medium, and incubated at 28°C for 5 days. Once the mycelium had developed, they were transferred to another PDA medium and cultured at 28°C for a period of 3-5 days. Totally fifteen identical strains were isolated, their colonies were white and round in shape; hyphae were smooth, hyaline; conidia were globose or subglobose, smooth, aseptate, 5.8-11.9 × 4.2-10.6 µm (av. = 8.8 × 7.4 µm, n = 30), light brown in early stage and gradually turning black over time; sterile cells were terminal on hyphae, pale to dark brown, uhceiform or oval, 17.5-21.6 × 4.6-8.7 µm (av. = 19.4 × 5.8 µm, n = 30). The morphologic characteristics of the isolates matched Nigrospora chinensis described by Wang et al. (2017). The PCR amplification was carried out by 3 primers ITS1/ITS4 (Vilgalys et al. 1990; White et al. 1990), EF1-728/EF2 (O'Donnell et al. 1998; Carbone et al. 1999) and BT2A/BT2B (Glass et al. 1995) belonged to the internal transcribed spacer (ITS), translation elongation factor-1 (TEF1) and ß-tubulin (TUB2) gene loci, respectively. The sequences of a representative strain (GUCC 524) had 99.38% (ITS: 483/486 bp, PP391347 vs KX985970), 99.79% (TEF1: 482/483 bp, PP400678 vs KY019427) and 99.73% (TUB2: 372/373 bp, PP400677 vs KY019497) identities with those of N. chinensis (strain LC 3085). The phylogenetic tree constructed by three gene combinations showed that GUCC 524 was significantly clustered with N. chinensis. Ten 6-month-old dragon fruit ("Zi honglong" cultivar) seedlings were engrafted with 10 µL conidial suspension (1×105 conidia/mL), packaged with sealed film, two of them were inoculated with sterile distilled water as controls, and placed in a greenhouse at 28℃ for 10 days, inoculated plants showed yellow spots analogous to field symptoms, no symptoms were found in control plants. This experiment was repeated three times. Morphological character and molecular identification based on 3 gene loci of the strains isolated from the inoculated stems, were consistent with those of the original isolated strains. Therefore, based on morphological identification, phylogenetic analysis and pathogenicity test, the pathogen was identified as N. chinensis. Our study firstly reported N. chinensis as a pathogen causing stem spot disease on dragon fruit. N. chinensis is an important agent resulting for economic losses, previously reported on Camellia sinensis (Wang et al. 2017), Saccharum officinarum (Raza et al. 2019), Aucuba japonica (Qin et al. 2021). This report establishes a pivotal reference point for the progression of scientific strategies in preventing and controlling this disease associated with N. chinensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...