Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Article in English | MEDLINE | ID: mdl-38669697

ABSTRACT

The construction of cell mimics replicating the surface landscape and biological functions of the cell membrane offers promising prospects for biomedical research and applications. Inspired by the inherent recognition capability of immune cells toward pathogens, we have fabricated activated macrophage membrane-coated magnetic silicon nanoparticles (aM-MSNPs) in this work as an isolation and recognition tool for enhanced bacterial analysis. Specifically, the natural protein receptors on the activated macrophage membrane endow the MSNPs with a broad-spectrum binding capacity to different pathogen species. By further incorporation of a tyramide amplification strategy, direct naked-eye analysis of specific bacteria with a detection limit of 10 CFU/mL can be achieved. Moreover, application to the diagnosis of urinary tract infections has also been validated, and positive samples spiked with bacteria can be clearly distinguished with an accuracy of 100%. This work may enrich cell membrane-based architectures and provide an experimental paradigm for point-of-care testing (POCT) detection of bacteria.

2.
Sci Rep ; 14(1): 4092, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374429

ABSTRACT

In the increasing demand for virus vaccines, large-scale production of safe, efficient, and economical viral antigens has become a significant challenge. High-cell-density manufacturing processes are the most commonly used to produce vaccine antigens and protein drugs. However, the cellular stress response in large-scale cell culture may directly affect host cell growth and metabolism, reducing antigen production and increasing production costs. This study provided a novel strategy of the antioxidant auxiliary system (AAS) to supply molecular hydrogen (H2) into the cell culture media via proton exchange membrane (PEM) electrolysis. Integrated with a high-density cell bioreactor, the AAS aims to alleviate cellular stress response and increase viral vaccine production. In the results, the AAS stably maintained H2 concentration in media even in the high-air exposure tiding cell bioreactor. H2 treatment was shown safe to cell culture and effectively alleviated oxidative stress. In two established virus cultures models, bovine epidemic fever virus (BEFV) and porcine circovirus virus type 2 (PCV-2), were employed to verify the efficacy of AAS. The virus yield was increased by 3.7 and 2.5 folds in BEFV and PCV-2 respectively. In conclusion, the AAS-connected bioreactor effectively alleviated cellular oxidative stress and enhanced virus production in high-density cell culture.


Subject(s)
Antioxidants , Viral Vaccines , Swine , Animals , Cattle , Bioreactors , Cell Culture Techniques/methods , Hydrogen
3.
Biosens Bioelectron ; 242: 115748, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37847984

ABSTRACT

Granzyme B (GrB) is a serine protease released by natural killer cells and cytotoxic T lymphocytes during immune responses, which not only plays a role in tumor diagnosis but also provides valuable guidance during tumor treatment. In this work, we have designed a charge-switching peptide to fabricate an electrochemical biosensor for quantitative analysis of GrB. Specifically, the designed zwitterionic peptide is in an electrically neutral state before activation, and a door lock structure (proline) is constructed by utilizing the selectivity of carboxypeptidase A (CPA) to the carboxy-terminus of the peptide chain. The door lock is opened when the target is present, allowing CPA to hydrolyze the peptide. At this time, the peptide will convert from neutral to positive, triggering the assembly of a positively charged peptide layer on the electrode surface, resulting in a signal change. Studies have shown that the biosensor has good analytical performance, with a detection range of 0.01 pM-8 pM and a detection limit as low as 3.5 fM. Moreover, the developed biosensor has been effectively applied to the analysis of clinical samples, demonstrating its ability to monitor tumor progression and treatment with clinical applications.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Biosensing Techniques/methods , Granzymes , Peptides/chemistry , Electrochemical Techniques/methods , Limit of Detection
4.
J Agric Food Chem ; 71(32): 12216-12224, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37526340

ABSTRACT

Understanding the biosynthetic pathways of fungal pigments can help elucidate their roles in fungal growth processes. Trichodimerol is a unique cage-like dimeric sorbicillinoids pigment that is commonly isolated from many fungi, however, its biosynthesis is just partially clarified. In this study, we report that a biosynthetic gene cluster encoded major facilitator superfamily transporter (StaE) from the fungus Stagonospora sp. SYSU-MS7888 is involved in the formation of trichodimerol, together with several other dimeric sorbicillinoids. Using Aspergillus oryzae NSARI as a heterologous host, we demonstrated that the formation of dimeric sorbicillinoids required co-expression of the transporter StaE with biosynthetic genes (two PKSs and one monooxygenase) that are responsible for constructing the monomer precursor sorbicillinol. Fluorescence microscopy results showed that eGFP-tagged StaE is localized on the endoplasmic reticulum, suggesting that sorbicillinoid dimerizations might be compartmentalized in this organelle.


Subject(s)
Ascomycota , Dimerization , Multigene Family
5.
Nat Commun ; 14(1): 2927, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217531

ABSTRACT

Bacterial infection is a major threat to global public health, which urgently requires useful tools to rapidly analyze pathogens in the early stages of infection. Herein, we develop a smart macrophage (Mø)-based bacteria detector, which can recognize, capture, enrich and detect different bacteria and their secreted exotoxins. We transform the fragile native Møs into robust gelated cell particles (GMøs) using photo-activated crosslinking chemistry, which retains membrane integrity and recognition capacity for different microbes. Meanwhile, these GMøs equipped with magnetic nanoparticles and DNA sensing elements can not only respond to an external magnet for facile bacteria collection, but allow the detection of multiple types of bacteria in a single assay. Additionally, we design a propidium iodide-based staining assay to rapidly detect pathogen-associated exotoxins at ultralow concentrations. Overall, these nanoengineered cell particles have broad applicability in the analysis of bacteria, and could potentially be used for the management and diagnosis of infectious diseases.


Subject(s)
Bacterial Infections , Macrophages , Humans , Macrophages/metabolism , Bacterial Infections/microbiology , Bacteria/genetics , DNA/metabolism , Exotoxins/metabolism
6.
Nano Lett ; 23(7): 2854-2861, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36930741

ABSTRACT

Micro/nanocarriers hold great potential in bioanalysis for molecular recognition and signal amplification but are frequently hampered by harsh synthesis conditions and time-consuming labeling processes. Herein, we demonstrate that Escherichia coli (Ec) can be engineered as an efficient biocarrier for electrochemical immunoassay, which can load ultrahigh amounts of redox indicators and simultaneously be decorated with detection antibodies via a facile polydopamine (PDA)-mediated coating approach. Compared with conventional carrier materials, the entire preparation of the Ec biocarrier is simple, highly sustainable, and reproducible. Moreover, immune recognition and electrochemical transduction are performed independently, which eliminates the accumulation of biological interference on the electrode and simplifies electrode fabrication. Using human epidermal growth factor receptor 2 (HER2) as the model target, the proposed immunosensor exhibits excellent analytical performance with a low detection limit of 35 pg/mL. The successful design and deployment of Ec biocarrier may provide new guidance for developing biohybrids in biosensing applications.


Subject(s)
Biosensing Techniques , Humans , Immunoassay , Limit of Detection , Escherichia coli , Delayed-Action Preparations
7.
Nucleic Acids Res ; 50(18): 10562-10570, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156138

ABSTRACT

In this study, a hydrazone chemistry-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) system has been proposed for the fist time and constructed. In our system, hydrazone chemistry is designed and employed to accelerate the formation of a whole activation strand by taking advantage of the proximity effect induced by complementary base pairing, thus activating the CRISPR/Cas12a system quickly and efficiently. Moreover, the introduction of hydrazone chemistry can improve the specificity of the CRISPR/Cas12a system, allowing it to effectively distinguish single-base mismatches. The established system has been further applied to analyze Pseudomonas aeruginosa by specific recognition of the probe strand with a characteristic fragment in 16S rDNA to release the hydrazine group-modified activation strand. The method shows a wide linear range from 3.8 × 102 colony-forming units (CFU)/ml to 3.8 × 106 CFU/ml, with the lowest detection limit of 24 CFU/ml. Therefore, the introduction of hydrazone chemistry may also broaden the application of the CRISPR/Cas12a system.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , CRISPR-Associated Proteins/genetics , DNA, Ribosomal , Gene Editing/methods , Hydrazones/pharmacology
8.
Biosens Bioelectron ; 215: 114564, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35853325

ABSTRACT

Peptides possess many appealing and desirable features, which have attracted increasing attention in the field of electrochemical biosensing. However, peptides hardly produce noticeable electronic signals in response to target binding events. In this work, amphipathic peptides FFFGGGGRGDS with both target recognition and self-assembly capabilities are designed to be co-assembled with the electroactive species ferrocenecarboxylic acid (FcCOOH). Furthermore, the resultant electroactive peptide nanoprobes (ePNPs) are applied for sensitive electrochemical analysis of tumor cells. Specifically, tumor cells are captured by the electrode modified with the corresponding DNA aptamers, and ePNPs can then selectively bind to integrin proteins on the cell surface, thereby accompanied by a remarkable increase of electrochemical signal. Taking the assay of MDA-MB-231 cells, the fabricated biosensor can detect cancer cells with a detection limit of 7 cells mL-1. Moreover, the ePNPs can act as a universal probe for the detection of different cell lines. Given the merits of easy synthesis, convenient operation, and favorable analytical performance, the proposed biosensor exhibits great potential in developing peptide-based electrochemical biosensing for clinical applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Peptides
9.
Anal Chem ; 94(12): 5055-5061, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35290034

ABSTRACT

The functionalization of covalent organic frameworks (COFs) with biomacromolecules can extend their functions, which is the premise of their application in biomedical research. However, strategies to functionalize COFs with biomacromolecules, which can ensure the stability in complex medium and minimize the undesired effects, are still lacking. In this work, we have proposed a strategy to functionalize COFs with DNA by covalently linking DNA to the functional group on the COF surface through Cu(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The as-prepared DNA-functionalized COFs (DNA-COFs) can exhibit good hybridization ability and cargo loading ability; thus, we have designed a DNA-COF-based nanoprobe and then fabricated an electrochemical biosensor for the detection of exosomes. In this design, the functionalization with DNA enables COFs to recognize and capture exosomes, and the encapsulation of a large number of methylene blue (MB) in COFs facilitates signal amplification, which can enhance the sensitivity of the biosensor. Moreover, by simply replacing the oligonucleotide sequences, the strategy proposed here can generally be used to build different DNA-COFs with diverse functions for broader biomedical applications.


Subject(s)
Biosensing Techniques , Exosomes , Metal-Organic Frameworks , Cycloaddition Reaction , DNA , Metal-Organic Frameworks/chemistry
10.
Bioorg Chem ; 120: 105601, 2022 03.
Article in English | MEDLINE | ID: mdl-35033816

ABSTRACT

NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.


Subject(s)
Glutamate Dehydrogenase , NADPH Dehydrogenase , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acids/metabolism , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Kinetics , NADP/metabolism , NADPH Dehydrogenase/metabolism
11.
J Mater Chem B ; 10(3): 450-455, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34981801

ABSTRACT

The simple and sensitive detection of protein is of great significance in biological research and medical diagnosis. However, the commonly-used methods, such as enzyme-linked immunosorbent assay (ELISA), usually rely on signal tags labeled on the antibody, which limits the sensitivity and stability. Herein, we have designed and constructed a colorimetric immunosensor in this work for the analysis of protein by taking advantage of 2D metal-organic framework (2D-MOF) nanomaterials as enzyme mimics. The nanomaterial shows a strong peroxidase mimetic activity, and good selectivity after it is modified with a specific aptamer. Therefore, taking carcinoembryonic antigen (CEA) as an example, this immunosensor achieves a good detection performance with a linear range from 1 pg mL-1 to 1000 ng mL-1 and a limit of detection (LOD) of 0.742 pg mL-1. Moreover, the sensor can successfully distinguish the human serum of colorectal cancer patients from healthy people, which suggests that this sensor has great potential in clinical applications. More importantly, the mass production, low cost, stability and ease of transport of the MOFs nanomaterials, as well as the ability for visual detection will make this sensor suitable for point-of-care (POC) testing in remote or resource-poor areas.


Subject(s)
Carcinoembryonic Antigen/blood , Colorimetry/methods , Immunoassay/methods , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Antibodies, Immobilized/immunology , Aptamers, Nucleotide/chemistry , Benzidines/chemistry , Biomarkers/blood , Carcinoembryonic Antigen/immunology , Catalysis , Chromogenic Compounds/chemistry , Colorectal Neoplasms/blood , Humans , Immobilized Nucleic Acids/chemistry , Limit of Detection
12.
Small ; 17(46): e2103255, 2021 11.
Article in English | MEDLINE | ID: mdl-34605143

ABSTRACT

CsPbX3 perovskite nanocrystals (NCs), with excellent optical properties, have drawn considerable attention in recent years. However, they also suffer from inherent vulnerability and hydrolysis, causing the new understanding or new applications to be difficultly explored. Herein, for the first time, it is discovered that the phospholipid membrane (PM)-coated CsPbX3 NCs have intrinsic biocatalytic activity. Different from other peroxidase-like nanozymes relying on extra chromogenic reagents, the PM-CsPbX3 NCs can be used as a self-reporting nanoprobe, allowing an "add-to-answer" detection model. Notably, the fluorescence of PM-CsPbX3 NCs can be rapidly quenched by adding H2 O2 and then be restored by removing excess H2 O2 . Initiated from this unexpected observation, the PM-CsPbX3 NCs can be explored to prepare multi-color bioinks and metabolite-responsive paper analytical devices, demonstrating the great potential of CsPbX3 NCs in bioanalysis. This is the first report on the discovery of nanozyme-like property of all-inorganic CsPbX3 perovskite NCs, which adds another piece to the nanozyme puzzle and opens new avenues for in vitro disease diagnostics.


Subject(s)
Calcium Compounds , Nanoparticles , Oxides , Titanium
13.
Vaccines (Basel) ; 9(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200003

ABSTRACT

During industrial-scale production of viruses for vaccine manufacturing, anti-viral response of host cells can dampen maximal viral antigen yield. In addition to interferon responses, many other cellular responses, such as the AMPK signaling pathway or senescence-like response may inhibit or slow down virus amplification in the cell culture system. In this study, we first performed a Gene Set Enrichment Analysis of the whole-genome mRNA transcriptome and found a senescence-like cellular response in BHK-21 cells when infected with bovine ephemeral fever virus (BEFV). To demonstrate that this senescence-like state may reduce virus growth, BHK-21 subclones showing varying degrees of a senescence-like state were infected with BEFV. The results showed that the BHK-21 subclones showing high senescence staining could inhibit BEFV replication while low senescence-staining subclones are permissive to virus replication. Using a different approach, a senescence-like state was induced in BHK-21 using a small molecule, camptothecin (CPT), and BEFV susceptibility were examined. The results showed that CPT-treated BHK-21 is more resistant to virus infection. Overall, these results indicate that a senescence-like response may be at play in BHK-21 upon virus infection. Furthermore, cell clone selection and modulating treatments using small molecules may be tools in countering anti-viral responses.

14.
Curr Oncol ; 28(3): 1823-1834, 2021 05 12.
Article in English | MEDLINE | ID: mdl-34065851

ABSTRACT

PURPOSE: To evaluate the diagnostic performance of PI-RADS v2, proposed adjustments to PI-RADS v2 (PA PI-RADS v2) and biparametric magnetic resonance imaging (MRI) for prostate cancer detection. METHODS: A retrospective cohort of 224 patients with suspected prostate cancer was included from January 2016 to November 2018. All the patients underwent a multi-parametric MR scan before biopsy. Two radiologists independently evaluated the MR examinations using PI-RADS v2, PA PI-RADS v2, and a biparametric MRI protocol, respectively. Receiver operating characteristic (ROC) curves for the three different protocols were drawn. RESULTS: In total, 90 out of 224 cases (40.18%) were pathologically diagnosed as prostate cancer. The area under the ROC curves (AUC) for diagnosing prostate cancers by biparametric MRI, PI-RADS v2, and PA PI-RADS v2 were 0.938, 0.935, and 0.934, respectively. For cancers in the peripheral zone (PZ), the diagnostic sensitivity was 97.1% for PI-RADS v2/PA PI-RADS v2 and 96.2% for biparametric MRI. Moreover, the specificity was 84.0% for biparametric MRI and 58.0% for PI-RADS v2/PA PI-RADS v2. For cancers in the transition zone (TZ), the diagnostic sensitivity was 93.4% for PA PI-RADS v2 and 88.2% for biparametric MRI/PI-RADS v2. Furthermore, the specificity was 95.4% for biparametric MRI/PI-RADS v2 and 78.0% for PA PI-RADS v2. CONCLUSIONS: The overall diagnostic performance of the three protocols showed minimal differences. For lesions assessed as being category 3 using the biparametric MRI protocol, PI-RADS v2, or PA PI-RADS v2, it was thought prostate cancer detection could be improved. Attention should be paid to false positive results when PI-RADS v2 or PA PI-RADS v2 are used.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity
15.
ACS Appl Mater Interfaces ; 12(11): 13494-13502, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32093476

ABSTRACT

Fingerprint formed through lifted papillary ridges is considered the best reference for personal identification. However, the currently available latent fingerprint (LFP) images often suffer from poor resolution, have a low degree of information, and require multifarious steps for identification. Herein, an individual Cloud-based fingerprint operation platform has been designed and fabricated to achieve high-definition LFPs analysis by using CsPbBr3 perovskite nanocrystals (NCs) as eikonogen. Moreover, since CsPbBr3 NCs have a special response to some fingerprint-associated amino acids, the proposed platform can be further used to detect metabolites on LFPs. Consequently, in virtue of Cloud computing and artificial intelligence (AI), this study has demonstrated a champion platform to realize the whole LFP identification analysis. In a double-blind simulative crime game, the enhanced LFP images can be easily obtained and used to lock the suspect accurately within one second on a smartphone, which can help investigators track the criminal clue and handle cases efficiently.

16.
BMC Vet Res ; 15(1): 313, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477093

ABSTRACT

BACKGROUND: Bovine ephemeral fever virus (BEFV) causes fever and muscle stiffness in cattle, resulting in negative economic impact for cattle and dairy farms. During the manufacturing process of inactivated vaccine for virus control, it is important to determine the virus titer, but traditional methods such as plaque assay and TCID50 assay require days of waiting time. We sought to develop a quick dot blot assay for BEFV titering. RESULTS: Three different kinds of BEFV antigens were prepared to raise primary antibodies for BEFV detection in dot blot assays: 1) purified BEFV particles, 2) Escherichia coli (E. coli)-expressed BEFV G1 region, and 3) E. coli-expressed BEFV N protein. Results showed that antibodies raised against purified BEFV particles can detect BEFV particles, but it also showed a high background level from the proteins of BHK-21 cells. Antibodies raised against E.coli-expressed BEFV G1 region could not detect BEFV particles in dot blot assays. Finally, antibodies raised against E.coli-expressed BEFV N protein detected BEFV particles with a high signal-to-noise ratio in dot blot assays. CONCLUSIONS: E.coli-expressed N protein is a suitable antigen for the production of antiserum that can detect BEFV particles with a high signal-to-noise ratio. A dot blot assay kit using this antiserum can be developed as a quick and economical way for BEFV titering.


Subject(s)
Ephemeral Fever Virus, Bovine/isolation & purification , Ephemeral Fever/virology , Immunoblotting/veterinary , Animals , Antibodies, Viral , Cattle , Cell Line , Cricetinae , Gene Expression Regulation, Viral , Immunoblotting/methods , Rabbits , Viral Proteins/genetics , Viral Proteins/metabolism
17.
Carbohydr Polym ; 157: 1341-1348, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987841

ABSTRACT

Curdlan was grafted to poly(vinyl alcohol) (PVA) to form a porous scaffold. The grafted PVA-curdlan 3D scaffold was then examined by Fourier transform infrared spectroscopy (FT-IR). Grafting increased the water absorbency of the scaffold by 280%. Scanning electron microscopic (SEM) observations of the material revealed that the 3D scaffold was highly porous when it was fabricated using a homogenizer at 300rpm. Compression testing revealed that, increasing the amount of curdlan increased the strength of the 3D scaffold to 8-16×10-3MPa. Over 28days, various enzymes degraded the 3D scaffold, causing a weight loss of up to 20-40%. In vivo tests revealed favorable cell proliferation and growth in a 3D scaffold.


Subject(s)
Biocompatible Materials/chemistry , Materials Testing , Polyvinyl Alcohol/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , beta-Glucans/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared
18.
Radiol Infect Dis ; 2(4): 173-176, 2015 Dec.
Article in English | MEDLINE | ID: mdl-32289068

ABSTRACT

Middle East respiratory syndrome is a viral respiratory illness caused by a novel human beta-coronavirus. Based on the first case of Middle East respiratory syndrome found in China, a clinical research in combination with radiological findings was studied. Fever was the main clinical manifestation of this patient, and the primary imaging findings were basically the same as viral pneumonia. Differential imaging diagnosis on the basis of epidemiological and experimental pathogen detection is helpful for clinical diagnosis of MERS, even in distinguishing from SARS and pneumonia caused by H7N9 avian influenza.

19.
Article in English | MEDLINE | ID: mdl-15838144

ABSTRACT

With the development of microarray techniques, there is an increasing need of information processing methods to analyze the high throughput data. Clustering is one of the most promising candidates because of its simplicity, flexibility and robustness. However, there is no "perfect" clustering approach outperforming its counterparts, and it is hard to evaluate and combine the results from different techniques, especially in a field without much prior knowledge, such as bioinformatics. This paper proposes a meta-clustering approach to extract the information from results of different clustering techniques, so that a better interpretation of the data distribution can be obtained. A special distance measure is defined to represent the statistical "signal" of each cluster produced by various clustering techniques. The algorithm is applied on both artificial and real data Simulations show that the proposed approach is able to extract the information efficiently and accurately from the input clustering structure.


Subject(s)
Algorithms , Cluster Analysis , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Pattern Recognition, Automated/methods , Sequence Analysis, DNA/methods , Sequence Alignment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...