Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 14(6): 2716-2731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828148

ABSTRACT

Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments. Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood‒tumor barrier (BTB). BTB activates its Wnt signaling to maintain barrier properties, e.g., Mfsd2a-mediated BTB low transcytosis. Here, we reported VCAM-1-targeting nano-wogonin (W@V-NPs) as an adjuvant of nano-orlistat (O@V-NPs) to intensify drug delivery and inhibit lipogenesis of brain metastases. W@V-NPs were proven to be able to inactivate BTB Wnt signaling, downregulate BTB Mfsd2a, accelerate BTB vesicular transport, and enhance tumor accumulation of O@V-NPs. With the ability to specifically kill cancer cells in a lipid-deprived environment with IC50 at 48 ng/mL, W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice. The combination did not induce brain edema, cognitive impairment, and systemic toxicity in healthy mice. Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.

2.
J Control Release ; 369: 458-474, 2024 May.
Article in English | MEDLINE | ID: mdl-38575077

ABSTRACT

The blood-brain barrier (BBB)/blood-tumor barrier (BTB) impedes brain entry of most brain-targeted drugs, whether they are water-soluble or hydrophobic. Endothelial WNT signaling and neoplastic pericytes maintain BTB low permeability by regulating tight junctions. Here, we proposed nitazoxanide (NTZ) and ibrutinib (IBR) co-loaded ICAM-1-targeting nanoparticles (NI@I-NPs) to disrupt the BTB in a time-dependent, reversible, and size-selective manner by targeting specific ICAM-1, inactivating WNT signaling and depleting pericytes in tumor-associated blood vessels in breast cancer brain metastases. At the optimal NTZ/IBR mass ratio (1:2), BTB opening reached the optimum effect at 48-72 h without any sign of intracranial edema and cognitive impairment. The combination of NI@I-NPs and chemotherapeutic drugs (doxorubicin and etoposide) extended the median survival of mice with breast cancer brain metastases. Targeting BTB endothelial WNT signaling and tumor pericytes via NI@I-NPs could open the BTB to improve chemotherapeutic efficiency against brain metastases.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Nanoparticles , Pericytes , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Pericytes/metabolism , Pericytes/drug effects , Female , Humans , Nanoparticles/administration & dosage , Piperidines/administration & dosage , Piperidines/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Thiazoles/administration & dosage , Thiazoles/pharmacology , Cell Line, Tumor , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Mice, Inbred BALB C , Wnt Signaling Pathway/drug effects , Mice , Drug Delivery Systems , Adenine/analogs & derivatives
3.
RSC Med Chem ; 15(4): 1216-1224, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665839

ABSTRACT

ß-Amyloid (Aß) aggregation is increasingly recognized as both a biomarker and an inducer of the progression of Alzheimer's disease (AD). Here, we describe a novel fluorescent probe P14, developed based on the BODIPY structure, capable of simultaneous visualization and inhibition of Aß aggregation in vivo. P14 shows high binding affinity to Aß aggregates and selectively labels Aß plaques in the brain slices of APP/PS1 mice. Moreover, P14 is able to visualize overloaded Aß in both APP/PS1 and 5 × FAD transgenic mice in vivo. From the aspect of potential therapeutic effects, P14 administration inhibits Aß aggregation and alleviates Aß-induced neuronal damage in vitro, as well as reduces central Aß deposition and ameliorates cognitive impairment in APP/PS1 transgenic mice in vivo. Finally, P14 is applied to monitor the progression of Aß aggregation in the brain of 5 × FAD transgenic mice and the intervention effect itself by fluorescence imaging. In summary, the discovery of this fluorescent agent might provide important clues for the future development of theranostic drug candidates targeting Aß aggregation in AD.

4.
Small ; 19(35): e2300403, 2023 08.
Article in English | MEDLINE | ID: mdl-37104822

ABSTRACT

Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.


Subject(s)
Brain Neoplasms , Nanocapsules , Mice , Animals , Endothelial Cells/metabolism , Biomimetics , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Membrane Proteins/metabolism , Blood-Brain Barrier/metabolism
5.
Structure ; 31(3): 230-243, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36750098

ABSTRACT

Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.


Subject(s)
Amyloid , Amyloid/chemistry , Magnetic Resonance Spectroscopy
6.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499553

ABSTRACT

The liquid-liquid phase separation (LLPS) of proteins has been found ubiquitously in eukaryotic cells, and is critical in the control of many biological processes by forming a temporary condensed phase with different bimolecular components. TDP-43 is recruited to stress granules in cells and is the main component of TDP-43 granules and proteinaceous amyloid inclusions in patients with amyotrophic lateral sclerosis (ALS). TDP-43 low complexity domain (LCD) is able to de-mix in solution, forming the protein condensed droplets, and amyloid aggregates would form from the droplets after incubation. The molecular interactions regulating TDP-43 LCD LLPS were investigated at the protein fusion equilibrium stage, when the droplets stopped growing after incubation. We found the molecules in the droplet were still liquid-like, but with enhanced intermolecular helix-helix interactions. The protein would only start to aggregate after a lag time and aggregate slower than at the condition when the protein does not phase separately into the droplets, or the molecules have a reduced intermolecular helix-helix interaction. In the protein condensed droplets, a structural transition intermediate toward protein aggregation was discovered involving a decrease in the intermolecular helix-helix interaction and a reduction in the helicity. Our results therefore indicate that different intermolecular interactions drive LLPS and fibril formation. The discovery that TDP-43 LCD aggregation was faster through the pathway without the first protein phase separation supports that LLPS and the intermolecular helical interaction could help maintain the stability of TDP-43 LCD.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyloid , Amyloidogenic Proteins , Amyotrophic Lateral Sclerosis/metabolism , Protein Aggregates
7.
JBMR Plus ; 6(10): e10662, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36248276

ABSTRACT

Solid-state nuclear magnetic resonance (SSNMR), a technique capable of studying solid or semisolid biological samples, was first applied to study the cell differentiation and mineralization using the whole-cell sample. Mesenchymal stromal cells (MSCs) with multipotent differentiation capacity were induced to differentiate into osteoblasts. The whole differentiation process, osteoblast mineralization and the mineral maturation, was investigated using SSNMR, providing intact, atomic level information on the cellular mineral structural transformation. Our research indicated the extent of osteoblast mineralization could vary significantly for different cell populations whereas the difference was not easily shown by other means of characterization. The SSNMR spectra revealed hydroxylapatite (or hydroxyapatite [HAP]) formation around 2 to 4 weeks after osteogenic induction for MSCs with a high differentiation potency. The early mineral phase deposit before HAP formation contained a high amount of HPO4 2-. The structures of minerals in the extracellular matrix (ECM) of osteoblasts could evolve for a period of time, even after the incubation of cells has been stopped. This observation was only possible by studying the sample in an intact state, where ECM was not disturbed. These findings improved our understanding of MSCs, which had wide applications in bone regeneration and tissue engineering. Meanwhile, this work demonstrated the advantage of studying these cellular systems as a whole without any mineral extraction, which had been largely overlooked. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
J Mater Chem B ; 10(37): 7384-7396, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35792612

ABSTRACT

Nanoscale and non-self-replicating outer membrane vesicles (OMVs) are naturally secreted by some bacteria with their structures and compositions similar to that of the outer membrane of parental bacteria. With some specific bacterial physiological characteristics, e.g., immunomodulations and intercellular communications, OMVs have been intensively studied and extensively used and engineered as vaccines, immunotherapeutic drugs, anti-bacterial agents, and drug delivery carriers. In this review, we describe the extraction, characterization, and functionalization of OMVs with emphasis on the latest progress and prospects in biomedical applications.


Subject(s)
Bacterial Outer Membrane , Extracellular Vesicles , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Delivery Systems
9.
Adv Sci (Weinh) ; 9(16): e2105854, 2022 05.
Article in English | MEDLINE | ID: mdl-35355446

ABSTRACT

The blood-brain barrier (BBB) severely blocks the intracranial accumulation of most systemic drugs. Inspired by the contribution of the bacterial outer membrane to Escherichia coli K1 (EC-K1) binding to and invasion of BBB endothelial cells in bacterial meningitis, utilization of the BBB invasion ability of the EC-K1 outer membrane for brain-targeted drug delivery and construction of a biomimetic self-assembled nanoparticle with a surface featuring a lipopolysaccharide-free EC-K1 outer membrane are proposed. BBB penetration of biomimetic nanoparticles is demonstrated to occur through the transcellular vesicle transport pathway, which is at least partially dependent on internalization, endosomal escape, and transcytosis mediated by the interactions between outer membrane protein A and gp96 on BBB endothelial cells. This biomimetic nanoengineering strategy endows the loaded drugs with prolonged circulation, intracranial interstitial distribution, and extremely high biocompatibility. Based on the critical roles of gp96 in cancer biology, this strategy reveals enormous potential for delivering therapeutics to treat gp96-overexpressing intracranial malignancies.


Subject(s)
Biomimetics , Nanoparticles , Bacterial Outer Membrane , Brain , Endothelial Cells/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Nanoparticles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL