Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22558-22570, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38637157

ABSTRACT

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Nanoparticles , Particle Size , Spodoptera , Ivermectin/pharmacology , Ivermectin/chemistry , Animals , Spodoptera/drug effects , Nanoparticles/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Brassica/drug effects
2.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Article in English | MEDLINE | ID: mdl-38685223

ABSTRACT

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Animals , Insecticides/pharmacology , Insecticides/chemistry , Particle Size , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Moths/drug effects , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Larva/drug effects , Emulsions
3.
Toxics ; 12(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38251033

ABSTRACT

Chlorantraniliprole is a broad-spectrum insecticide that has been widely used to control pests in rice fields. Limited by its low solubility in both water and organic solvents, the development of highly efficient and environmentally friendly chlorantraniliprole formulations remains challenging. In this study, a low-cost and scalable wet media milling technique was successfully employed to prepare a chlorantraniliprole nanosuspension. The average particle size of the extremely stable nanosuspension was 56 nm. Compared to a commercial suspension concentrate (SC), the nanosuspension exhibited superior dispersibility, as well as superior foliar wetting and retention performances, which further enhanced its bioavailability against Cnaphalocrocis medinalis. The nanosuspension dosage could be reduced by about 40% while maintaining a comparable efficacy to that of the SC. In addition, the chlorantraniliprole nanosuspension showed lower residual properties, a lower toxicity to non-target zebrafish, and a smaller effect on rice quality, which is conducive to improving food safety and the ecological safety of pesticide formulations. In this work, a novel pesticide-reduction strategy is proposed, and theoretical and data-based support is provided for the efficient and safe application of nanopesticides.

4.
ACS Nano ; 18(1): 662-679, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38134332

ABSTRACT

Developing an environmentally friendly and safe nanodelivery system is crucial to improve the efficacy of pesticides and minimize environmental and health risks. However, preparing a completely water-based nanopesticide without using harmful solvents is a technical challenge. In this study, a water-based nanodelivery pesticide system was constructed to improve the efficacy and safety of Emamectin Benzoate (EB). A specific surfactant, 29-(4-(5-hydroxynonan-5-yl)phenoxy)-3,6,9,12,15,18,21,24,27-nonaoxanonacosan-1-ol (SurEB) was designed and synthesized to form a water-based nanodelivery system (EBWNS) with EB. Molecular dynamics simulations revealed the self-assembly and interaction forces between SurEB and EB in water, providing insights into the formation mechanism of EBWNS nanoparticles. The nanodelivery system showed the prolonged effectivity of EB with reduced degradation and demonstrated a good control efficacy for multiple target pests, such as red spider mite, beet armyworm larvae (Lepidoptera: Noctuidae), and rice stem borers (Chilo suppressalis). Toxicology tests on various objects demonstrated that the EBWNS has low toxicity for seeds, HaCaT cells, zebrafish, earthworm, and E. coli. This study provides a distinctive perspective for developing environmentally friendly nanopesticide formulations, which clarified a water-based treatment method for specific lipid-soluble pesticides. The water-based nanodelivery pesticide system has the potential to improve the efficacy and safety of pesticides in the process of field applications.


Subject(s)
Pesticides , Animals , Water , Escherichia coli , Zebrafish
5.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430542

ABSTRACT

Safe and efficient pesticide formulations have attracted great attention for the prevention and control of diseases and pests. In recent years, improving the effectiveness and duration of pesticides through nanotechnology has become a research hotspot in the field of pesticide formulations. Here, we develop a novel hydrophilic lambda-cyhalothrin nanospheres encapsulated with poly(styrene-co-maleic anhydride) (PSMA) via the ultrasonic emulsification-solvent evaporation method, which exhibited better particle size uniformity and dispersion in comparison with the traditional method. The effects of PSMA content, oil phase/water phase ratio and phacoemulsification time on the particle size and morphology of nanoparticles were investigated to optimize preparation process parameters. Meanwhile, the wettability and adhesion behavior on the leaf surface, the release properties, and the storage stability of nanoparticles were characterized to evaluate the performance of the novel nano-formulation. This work not only establishes a facile and promising method for the applicable of insoluble pesticides, but also develops an innovative nano-formulation with hydrophilicity and high leaf adhesion, which opens a new direction in plant protection and residue reduction.


Subject(s)
Nanospheres , Pesticides , Solvents , Ultrasonics , Pesticides/chemistry , Hydrophobic and Hydrophilic Interactions
6.
J Mater Chem B ; 10(47): 9896-9905, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36448451

ABSTRACT

Pesticides play an important role in agricultural disease and pest control. However, the low utilization efficiency and environmentally unfriendly disadvantages of conventional pesticide formulations cause substantial environmental and ecological damage. Constructing intelligent controlled-release pesticide systems via nanotechnology is a feasible way to overcome these defects. In this research, an emamectin benzoate-loaded liposome nano-vesicle (EB-Lip-NV) with a multicompartment structure and thermo-responsive characteristics was developed to accurately control nocturnal pests and improve insecticidal activity. EB-Lip-NV is an unusual low-temperature rapid-release system based on phase transitions of the liposome membrane. Compared with the conventional water-soluble granule (SG), the EB-Lip-NV exhibited higher control activity on Spodoptera exigua. More importantly, the control efficacy of Spodoptera exigua at 20 °C was around 1.4 times that at 40 °C because of low temperature-induced rapid release. This controlled-release behavior of EB-Lip-NV in response to temperature change could effectively control the population of nocturnal pests. In addition, the toxicity of the EB-Lip-NV towards zebrafish was lower than that of SG by above 50%. This study provides a new strategy for constructing intelligent controlled-release pesticide systems with improving utilization rate and reducing harm to the environment and non-target organisms.


Subject(s)
Nanotechnology , Zebrafish , Animals , Delayed-Action Preparations , Pest Control
7.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955636

ABSTRACT

Highly efficient gene delivery systems are essential for genetic engineering in plants. Traditional delivery methods have been widely used, such as Agrobacterium-mediated transformation, polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection. However, genotype dependence and other drawbacks of these techniques limit the application of genetic engineering, particularly genome editing in many crop plants. There is a great need to develop newer gene delivery vectors or methods. Recently, nanomaterials such as mesoporous silica particles (MSNs), AuNPs, carbon nanotubes (CNTs), and layer double hydroxides (LDHs), have emerged as promising vectors for the delivery of genome engineering tools (DNA, RNA, proteins, and RNPs) to plants in a species-independent manner with high efficiency. Some exciting results have been reported, such as the successful delivery of cargo genes into plants and the generation of genome stable transgenic cotton and maize plants, which have provided some new routines for genome engineering in plants. Thus, in this review, we summarized recent progress in the utilization of nanomaterials for plant genetic transformation and discussed the advantages and limitations of different methods. Furthermore, we emphasized the advantages and potential broad applications of nanomaterials in plant genome editing, which provides guidance for future applications of nanomaterials in plant genetic engineering and crop breeding.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , CRISPR-Cas Systems , Gene Editing/methods , Gene Transfer Techniques , Genetic Engineering/methods , Genome, Plant , Gold , Plant Breeding/methods , Plants/genetics , Plants, Genetically Modified/genetics
8.
J Agric Food Chem ; 70(25): 7653-7661, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35698843

ABSTRACT

Pesticides play an important role in pest control. However, they can be limited due to low utilization efficiency, causing substantial losses to the environment and ecological damage. Nanotechnology is an active area of research regarding encapsulation of pesticides for sustainable pest control. Here, we developed intelligent formulations of avermectin (Av) quaternary ammonium chitosan surfactant (QACS) nanocapsules (i.e., Av-Th@QACS) with on-demand controlled release properties, toward ambient temperature and maximal synergistic biological activity of Av and QACS. The Av-Th@QACS regulated the quantity of pesticide release in accordance with the ambient temperature changes and, insofar as this release is a means of responding to variations in pest populations, maximized the synergistic activity. In addition, the Av-Th@QACS were highly adhesive to crop leaves as a result of the prolonged retention time on the crop leaves. Therefore, Av-Th@QACS exhibited greater control against aphids at 35 °C than at 15 and 25 °C. Compared with commercial formulations, Av-Th@QACS was more toxic at 35 °C and less toxic at 15 °C. Thus, researchers can apply Av-Th@QACS as intelligent nanopesticides with an on-demand, controlled release and synergistic biological activity and, in so doing, prolong pesticide duration and improve the utilization efficiency.


Subject(s)
Ammonium Compounds , Chitosan , Nanocapsules , Pesticides , Delayed-Action Preparations/pharmacology , Pesticides/pharmacology , Quaternary Ammonium Compounds , Surface-Active Agents
9.
Pest Manag Sci ; 78(8): 3717-3724, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35622946

ABSTRACT

BACKGROUND: Emamectin benzoate (EMB), a frequently used biopesticide, is poorly soluble in water, making it difficult to wet the leaf surface, is prone to degrade in sunlight and readily loses its bioactivity. Traditional methods such as organic solvent application, pH adjustment and addition of photoprotectants either increase the economic and environmental costs or barely achieve the desired goal. We hypothesized that nanotechnology could improve the solubility, foliar affinity, photostability and bioactivity of EMB. This research set out to prepare a nano-EMB solid powder (nano-EMB-SP) and test this hypothesis. RESULTS: Nano-EMB-SP was prepared using a self-emulsifying method combined with carrier solidification. The mean particle size and Polydispersity index (PDI) of nano-EMB-SP were 14.64 nm and 0.24, respectively. A scanning electron microscopy image showed that EMB nanoparticles were mainly spherical or ellipsoidal in shape. Without organic solvent, the aqueous solubility of EMB in nano-EMB-SP was 4500 mg L-1 , at least 14-fold that of the EMB soluble granule (EMB-SG), which is solubilized by pH adjustment. Excellent foliar affinity of EMB was achieved by nano-EMB-SP, which completely wet and penetrated the superhydrophobic surface of cabbage (Brassica oleracea L.) leaf. Without photoprotectants, up to 82% of EMB content can be protected from ultraviolet (UV) damage in nano-EMB-SP. The combined effects of excellent photostability and foliar affinity of nano-EMB-SP led to the bioactivity of EMB being almost unchanged before and after UV radiation. CONCLUSION: Nano-EMB-SP is an eco-friendly and efficient way to improve the solubility, foliar affinity, photostability and bioactivity of EMB. This research provides a good approach to improving the efficacy of poorly soluble and UV-sensitive pesticides. © 2022 Society of Chemical Industry.


Subject(s)
Ivermectin , Nanoparticles , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Solubility , Solvents
10.
Int J Mol Sci ; 23(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35328783

ABSTRACT

Diabetes is a chronic metabolic disease characterized by lack of insulin in the body leading to failure of blood glucose regulation. Diabetes patients usually need frequent insulin injections to maintain normal blood glucose levels, which is a painful administration manner. Long-term drug injection brings great physical and psychological burden to diabetic patients. In order to improve the adaptability of patients to use insulin and reduce the pain caused by injection, the development of oral insulin formulations is currently a hot and difficult topic in the field of medicine and pharmacy. Thus, oral insulin delivery is a promising and convenient administration method to relieve the patients. However, insulin as a peptide drug is prone to be degraded by digestive enzymes. In addition, insulin has strong hydrophilicity and large molecular weight and extremely low oral bioavailability. To solve these problems in clinical practice, the oral insulin delivery nanosystems were designed and constructed by rational combination of various nanomaterials and nanotechnology. Such oral nanosystems have the advantages of strong adaptability, small size, convenient processing, long-lasting pharmaceutical activity, and drug controlled-release, so it can effectively improve the oral bioavailability and efficacy of insulin. This review summarizes the basic principles and recent progress in oral delivery nanosystems for insulin, including physiological absorption barrier of oral insulin and the development of materials to nanostructures for oral insulin delivery nanosystems.


Subject(s)
Diabetes Mellitus , Nanostructures , Administration, Oral , Blood Glucose , Diabetes Mellitus/drug therapy , Drug Delivery Systems , Humans , Insulin/therapeutic use , Insulin, Regular, Human/therapeutic use , Pharmaceutical Preparations
11.
Int J Biol Macromol ; 206: 633-641, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35247422

ABSTRACT

Pesticide compounding technology for disease and pest control emerges as an effective way to increase the effectiveness of pesticides while reducing pesticides resistance. Nanomaterials and encapsulation technology have offered a new insight into preparing efficient pesticide formulations, especially constructing a co-delivery nanoparticle for synergistic pesticides. In this study, a dinotefuran/avermectin co-delivery nanoparticles (DACNPs) against pear tree pests with polylactic acid (PLA) as the wall material were constructed by double-emulsion method combined with high-pressure homogenization technique. The drug content of the DACNPs was 39.1% with an average size of 245.7 ± 4.2 nm and the mean polymer dispersity index (PDI) value was 0.123. The DACNPs showed high foliar retention and good spread performance on target leaves due to the nanoscale effect. The obtained DACNPs showed a better control effect on Grapholitha molesta Busck and Psylla chinensis Yang et Li compared with the commercial formulations, which could significantly prolong the effective duration and enhance the bioactivity with lower amounts and application frequency of pesticides. This study may provide new insights into developing novel pesticide formulations to improve the utilization rate of pesticides, reduce environmental pollution and minimize the cost of farming.


Subject(s)
Nanoparticles , Pesticides , Pyrus , Guanidines , Ivermectin/analogs & derivatives , Neonicotinoids , Nitro Compounds , Pesticides/pharmacology , Polyesters , Trees
12.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35159893

ABSTRACT

In this study, pyraclostrobin nanocapsules were prepared by in situ polymerization with urea-formaldehyde resin as a wall material. The effects of different emulsifiers, emulsifier concentrations, and solvents on the physicochemical properties of pyraclostrobin nanocapsules were investigated. Solvesso™ 100 was selected as the solvent, and Emulsifier 600# was used as the emulsifier, which accounted for 5% of the aqueous phase system, to prepare pyraclostrobin nanocapsules with excellent physical and chemical properties. The particle size, ζ potential, and morphology of the nanocapsules were characterized by a particle size analyzer and transmission electron microscope. The nanocapsules were analyzed by Fourier-transform infrared spectroscopy, and the loading content and sustained release properties of the nanocapsules were measured. The results show that the size of the prepared nanocapsules was 261.87 nm, and the polydispersity index (PDI) was 0.12, presenting a uniform spherical appearance. The loading content of the pyraclostrobin nanocapsules was 14.3%, and their cumulative release rate was 70.99% at 250 h, providing better efficacy and sustainability compared with the pyraclostrobin commercial formulation.

13.
J Nanobiotechnology ; 20(1): 11, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983545

ABSTRACT

Nanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs.


Subject(s)
Agriculture/methods , Agrochemicals , Nanostructures , Nanotechnology/methods , Sustainable Development
14.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613678

ABSTRACT

A functional food is a kind of food with special physiological effects that can improve health status or reduce illness. However, the active ingredients in functional foods are usually very low due to the instability and easy degradation of some nutrients. Therefore, improving the utilization rate of the effective ingredients in functional food has become the key problem. Nanomaterials have been widely used and studied in many fields due to their small size effect, high specific surface area, high target activity, and other characteristics. Therefore, it is a feasible method to process and modify functional food using nanotechnology. In this review, we summarize the nanoparticle delivery system and the food nanotechnology in the field of functional food. We also summarize and prospect the application, basic principle, and latest development of nano-functional food and put forward corresponding views.


Subject(s)
Nanoparticles , Nanostructures , Nanotechnology/methods , Functional Food , Food Technology
15.
J Agric Food Chem ; 69(43): 12579-12597, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672558

ABSTRACT

Pesticides are commonly used in modern agriculture and are important for global food security. However, postapplication losses due to degradation, photolysis, evaporation, leaching, surface runoff, and other processes may substantially reduce their efficacy. Controlled-release formulations can achieve the permeation-regulated transfer of an active ingredient from a reservoir to a target surface. Thus, they can maintain an active ingredient at a predetermined concentration for a specified period. This can reduce degradation and dissipation and other losses and has the potential to improve efficacy. Recent developments in controlled-release technology have adapted the concepts of intelligence and precision from the pharmaceutical industry. In this review, we present recent advances in the development of controlled-release formulations and discuss details of the preparation methods, material improvements, and application technologies.


Subject(s)
Pesticides , Agriculture , Delayed-Action Preparations
16.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641123

ABSTRACT

Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.

17.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685168

ABSTRACT

Nanotechnology could greatly improve global agricultural food production. Chlorantraniliprole and lambda cyhalothrin double-loaded nano-microcapsules were fabricated to enhance the control of pests by pesticides and improve the pesticide utilization efficiency. The nano-microcapsules were synthesized using a method involving the solid in oil in water encapsulation technique and solvent evaporation. The nano-microcapsules slowly and simultaneously released lambda cyhalothrin and chlorantraniliprole. The cumulative lambda cyhalothrin and chlorantraniliprole release rates at 40 h were 80% and 70%, respectively. Indoor Spodoptera frugiperda control tests indicated that the double-loaded nano-microcapsules were more toxic than lambda cyhalothrin water-dispersible granules, chlorantraniliprole water-dispersible granules, and a mixture of lambda cyhalothrin water-dispersible granules and chlorantraniliprole water-dispersible granules, indicating that the pesticides in the nano-microcapsules synergistically controlled Spodoptera frugiperda. The results indicated that pesticide nano-microcapsules with synergistic effects can be developed that can improve the effective pesticide utilization efficiency and pesticide bioavailability. This is a new idea for achieving environmentally intelligent pesticide delivery.

18.
Int J Mol Sci ; 22(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361113

ABSTRACT

Efficient and safe nanopesticides play an important role in pest control due to enhancing target efficiency and reducing undesirable side effects, which has become a hot spot in pesticide formulation research. However, the preparation methods of nanopesticides are facing critical challenges including low productivity, uneven particle size and batch differences. Here, we successfully developed a novel, versatile and tunable strategy for preparing buprofezin nanoparticles with tunable size via anodic aluminum oxide (AAO) template-assisted method, which exhibited better reproducibility and homogeneity comparing with the traditional method. The storage stability of nanoparticles at different temperatures was evaluated, and the release properties were also determined to evaluate the performance of nanoparticles. Moreover, the present method is further demonstrated to be easily applicable for insoluble drugs and be extended for the study of the physicochemical properties of drug particles with different sizes.


Subject(s)
Aluminum Oxide/chemistry , Coated Materials, Biocompatible/chemistry , Insecticides/chemistry , Metal Nanoparticles/chemistry , Thiadiazines/chemistry , Electrodes , Materials Testing , Porosity , Surface Properties
19.
Pest Manag Sci ; 77(4): 2078-2086, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33342015

ABSTRACT

BACKGROUND: Safe and efficient nanopesticides for pest control have attracted attention because of their ability to enhance target efficiency and reduce undesirable side effects. Nanoformulations have a significant role in solving the problem of water solubility for insoluble drugs. However, there are few studies on the physicochemical properties and biological activities of pesticides of different particle sizes and remains unclear how these key physicochemical properties are affected by particle size. In this study, a series of glucose-loaded lambda-cyhalothrin nanoparticles (LCNs) with a tunable size were developed via shearing emulsification and carrier loading in order to evaluate insecticidal action. RESULTS: The mean particle sizes of the LCNs were 50.6, 115.2 and 221 nm. The wettability, dispersibility and stability of nanoparticles were particle size-dependent, and were mainly determined by particle size and the uniformity of distribution. Furthermore, the insecticidal activity of LCNs was inversely proportional to the particle size. CONCLUSION: This study not only provides a facile technology for the preparation of nanopesticides with a tunable particle size, but also clarifies the effect of particle size on the performance of pesticides. © 2020 Society of Chemical Industry.


Subject(s)
Nanoparticles , Pyrethrins , Nitriles/toxicity , Particle Size
20.
J Mater Chem B ; 9(3): 783-792, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33333547

ABSTRACT

Pesticides play a very important role in pest control and plant protection. However, they can be limited by a tendency to cause ecological system damage due to significant losses into the environment. To increase pesticide utilization efficiency, we developed highly leaf-adhesive avermectin nanocapsules (Av-pH-cat@CS) with pH-responsive controlled release properties. The Av-pH-cat@CS nanocapsules displayed good thermal stability and photostability in response to UV light irradiation. The Av-pH-cat@CS nanocapsules could be disrupted at low pH and they exhibited excellent controlled release in response to pH, which improved the release of avermectins. In addition, the Av-pH-cat@CS nanocapsules were highly adhesive to crop leaves as a result of strong hydrogen bonding, which prolonged the retention time on crop leaves. The Av-pH-cat@CS nanocapsules with pH-responsive release and strong leaf adhesion improved the control efficacy and enhanced the utilization efficiency. Our findings offer a promising approach to prolonging pesticide duration on crop leaves and improving the utilization efficiency.


Subject(s)
Adhesives/chemistry , Antiprotozoal Agents/chemistry , Ivermectin/analogs & derivatives , Nanocapsules/chemistry , Pesticides/chemistry , Adhesives/chemical synthesis , Antiprotozoal Agents/chemical synthesis , Drug Liberation , Hydrogen Bonding , Hydrogen-Ion Concentration , Ivermectin/chemical synthesis , Ivermectin/chemistry , Molecular Structure , Particle Size , Pesticides/chemical synthesis , Plant Leaves/chemistry , Surface Properties , Time Factors , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...