Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Sci Adv ; 10(19): eadl1586, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718128

ABSTRACT

Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.


Subject(s)
Elasticity , Rheology , Viscosity , Rheology/methods , Humans , Animals , Lasers , Microscopy/methods
2.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675548

ABSTRACT

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Subject(s)
Sesquiterpenes , Xylariales , Mice , Animals , RAW 264.7 Cells , Xylariales/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides , Microbial Sensitivity Tests , Macrophages/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification
3.
J Affect Disord ; 355: 487-494, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548202

ABSTRACT

BACKGROUND: We aimed to prospectively examine the association of baseline allostatic load (AL) and longitudinal AL changes with incident cardiovascular disease (CVD) and all-cause mortality among middle-aged and elderly Chinese populations and evaluate the relative contributions of each physiological system of AL. METHODS: Data from the China Health and Retirement Longitudinal Study (CHARLS) among adults aged 45 years or older were analyzed. Cox regression models were used to estimate the hazard ratios (HRs) and 95 % confidence intervals (95 % CIs) for the associations between baseline AL/longitudinal AL changes with incident CVD and all-cause mortality. RESULTS: Compared with adults with AL 0-1, HRs of those with baseline AL 2-3 and AL ≥ 4 were 1.24 (95 % CI: 1.06, 1.45) and 1.51 (95 % CI: 1.27, 1.80) for incident CVD, and 1.39 (95 % CI: 1.11, 1.75) and 2.02 (95 % CI: 1.60, 2.54) for all-cause mortality. Similar results were found when we treated baseline AL as a continuous variable. We also found per AL score increase during 4 years of follow-up was related to a 11 % (HR, 1.11; 95 % CI: 1.03, 1.20) and 21 % (HR, 1.21; 95 % CI: 1.10, 1.34) increase in incident CVD and all-cause mortality, respectively. LIMITATIONS: Self-reported physician-diagnosed CVD was used to assess the incident CVD. CONCLUSIONS: Both baseline AL and longitudinal increases in AL were positively associated with incident CVD and all-cause mortality in middle-aged and elderly adults. Individuals with high AL need to be dynamically monitored for CVD and pre-mature mortality prevention.


Subject(s)
Allostasis , Cardiovascular Diseases , Aged , Adult , Middle Aged , Humans , Cardiovascular Diseases/epidemiology , Longitudinal Studies , Cohort Studies , Risk Factors
4.
J Appl Stat ; 50(11-12): 2504-2517, 2023.
Article in English | MEDLINE | ID: mdl-37529569

ABSTRACT

The difference in age structure and aging population level was an important factor that caused the difference in COVID-19's case fatality rate (CFR) in various regions. To eliminate the age effect on estimating the CFR of COVID-19, our study applied nonlinear logistic model and maximum likelihood method to fit the age-fatality curves of COVID-19 in different countries and regions. We further computed the standardized mortality ratio from the age-fatality curves of COVID-19 in the above regions and found that the risk of COVID-19 death in Wuhan was of a moderate level, while the non-Hubei region was even lower, compared with other regions. Regarding the disparity of CFRs among different regions in the country, we believed that there might be an unascertained phenomenon in high-endemic regions. Based on age-fatality rate curves, we estimated unascertained rates in cities with severe epidemics such as Wuhan and New York, and it was found that the total unascertained rates in Wuhan and New York were 81.6% and 81.2%, respectively. Meanwhile, we also found that the unascertained rates varied greatly with age.

5.
bioRxiv ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37333220

ABSTRACT

Mechanical transformation of tissue is not merely a symptom but a decisive driver in pathological processes. Comprising intricate network of cells, fibrillar proteins, and interstitial fluid, tissues exhibit distinct solid-(elastic) and liquid-like (viscous) behaviours that span a wide band of frequencies. Yet, characterization of wideband viscoelastic behaviour in whole tissue has not been investigated, leaving a vast knowledge gap in the higher frequency range that is linked to fundamental intracellular processes and microstructural dynamics. Here, we present wideband Speckle rHEologicAl spectRoScopy (SHEARS) to address this need. We demonstrate, for the first time, analysis of frequency-dependent elastic and viscous moduli up to the sub-MHz regime in biomimetic scaffolds and tissue specimens of blood clots, breast tumours, and bone. By capturing previously inaccessible viscoelastic behaviour across the wide frequency spectrum, our approach provides distinct and comprehensive mechanical signatures of tissues that may provide new mechanobiological insights and inform novel disease prognostication.

6.
Biomater Sci ; 11(15): 5274-5286, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37345831

ABSTRACT

Neurovascularized bone regeneration remains an enormous challenge in the clinic. Biomaterials mimicking the developmental microenvironment might be promising tools to enhance tissue regeneration. In this study, functionalized hydrogel-microsphere composites are developed to enhance bone regeneration via a recapitulating neurovascularized microenvironment. RGD peptide and the porous structure generated by the degradation of gelatin microspheres (GMs) are beneficial for the proliferation and migration of human mesenchymal stem cells (hMSCs); mesoporous silica nanoparticles (MSNs) promote osteogenic differentiation of hMSCs through the delivery of BFP-1 peptide; the QK peptide from the GMs is sustained-released to recruit endogenous endothelial cells (ECs), and IK19 peptide grafted on the hydrogel guides the neurite outgrowth. The in vivo results show that the hydrogel-microsphere composites not only promote new bone formation, but also facilitate nerve infiltration and angiogenesis. Furthermore, the neurovascularized niche created by this composite stimulated neurite growth through MAPK, PI3K, IL17 and TNF signaling pathways, enabling vascularized bone regeneration. The findings suggest a novel bioengineering approach to guide the construction of neurovascularized bone repair materials, which is beneficial for achieving functional bone regeneration and repair.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Osteogenesis/physiology , Hydrogels/chemistry , Microspheres , Endothelial Cells , Bone Regeneration , Peptides/chemistry , Neuronal Outgrowth
7.
J Mater Sci Mater Med ; 34(5): 24, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173603

ABSTRACT

Thrombosis can lead to a wide variety of life-threatening circumstances. As current thrombolytic drug screening models often poorly predict drug profiles, leading to failure of thrombolytic therapy or clinical translation, more representative clot substrates are necessary for drug evaluation. Utilizing a Chandler loop device to form clot analogs at high shear has gained popularity in stroke societies. However, shear-dependent clot microstructure has not been fully addressed and low shear conditions are often overlooked. We herein characterized the impact of wall shear rate (126 to 951 s-1) on clot properties in the Chandler loop. Different revolutions (20-60) per minute and tubing sizes (3.2 to 7.9 mm) were employed to create different sized clots to mimic various thrombosis applications. Increased shear resulted in decreased RBC counts (76.9 ± 4.3% to 17.6 ± 0.9%) and increased fibrin (10 to 60%) based on clot histology. Increased fibrin sheet morphology and platelet aggregates were observed at higher shear under scanning electron microscope. These results show the significant impact of shear and tubing size on resulting clot properties and demonstrate the capability of forming a variety of reproducible in-vivo-like clot analogs in the Chandler loop device controlling for simple parameters to tune clot characteristics.


Subject(s)
Stroke , Thrombosis , Humans , Blood Platelets , Stroke/pathology , Stroke/therapy , Fibrinolytic Agents , Fibrin
8.
Bioeng Transl Med ; 8(3): e10511, 2023 May.
Article in English | MEDLINE | ID: mdl-37206217

ABSTRACT

A great need exists for the development of a more representative in-vitro model to efficiently screen novel thrombolytic therapies. We herein report the design, validation, and characterization of a highly reproducible, physiological scale, flowing clot lysis platform with real-time fibrinolysis monitoring to screen thrombolytic drugs utilizing a fluorescein isothiocyanate (FITC)-labeled clot analog. Using this Real-Time Fluorometric Flowing Fibrinolysis assay (RT-FluFF assay), a tPa-dependent degree of thrombolysis was observed both via clot mass loss as well as fluorometrically monitored release of FITC-labeled fibrin degradation products. Percent clot mass loss ranged from 33.6% to 85.9% with fluorescence release rates of 0.53 to 1.17 RFU/min in 40 and 1000 ng/mL tPa conditions, respectively. The platform is easily adapted to produce pulsatile flows. Hemodynamics of human main pulmonary artery were mimicked through matching dimensionless flow parameters calculated using clinical data. Increasing pressure amplitude range (4-40 mmHg) results in a 20% increase of fibrinolysis at 1000 ng/mL tPA. Increasing shear flow rate (205-913 s-1) significantly increases fibrinolysis and mechanical digestion. These findings suggest pulsatile level affects thrombolytic drug activities and the proposed in-vitro clot model offers a versatile testing platform for thrombolytic drug screening.

9.
J Biomater Appl ; 37(9): 1617-1625, 2023 04.
Article in English | MEDLINE | ID: mdl-36880444

ABSTRACT

Using injectable hydrogels loaded with mesenchymal stem cells (MSCs) to repair chondral defects is a new trend of cartilage tissue engineering in recent years. In this study, hyaluronic acid (HA) hydrogels containing the system of sustained-release Kartogenin (KGN) and modified by RGD and HAV peptides were used to facilitate repair of cartilage defect in the knee joint of rabbits. Different groups of implants were injected into osteochondral defects, and samples were taken 4 weeks after operation. Through the qualitative and quantitative analysis of Micro-CT, it can be seen that both FH (unloaded cell group) and R + FH groups (allogeneic cell group) can repair osteochondral defects well, and the amount of bone formation is high, which is close to the intact cartilage groups. Macroscopic observation and histological staining analysis showed that except for the intact cartilage group, FH group obtained the highest score. The morphology of the cartilage tissue in the FH groups was more regular and continuous than that in R + FH and H + FH (xenogeneic cell group) groups, approaching that of native cartilage. Immunohistochemical staining of Collagen II (Col II) showed that the expression and morphology of Col II in FH groups were similar to those in intact cartilage tissue. Interestingly, through in vivo experiments, this functionalized hyaluronic acid hydrogel can effectively promote the rapid repair of rabbit knee cartilage defects within one month.


Subject(s)
Cartilage, Articular , Animals , Rabbits , Cartilage, Articular/pathology , Hydrogels , Hyaluronic Acid , Stem Cells , Tissue Engineering , Knee Joint/surgery , Collagen
10.
Int J Hypertens ; 2023: 1432727, 2023.
Article in English | MEDLINE | ID: mdl-36959846

ABSTRACT

Objectives: Previous studies reported that there were disparities in hypertension management among different ethnic groups, and this study aimed to systematically determine the prevalence, awareness, treatment, and control rates of hypertension in multiple Chinese ethnic groups. Methods: We searched Embase, PubMed, and Web of Science for articles up to 25 October, 2022. The pooled prevalence, awareness, treatment, and control rates of hypertension were estimated with 95% confidence intervals (CI). The heterogeneity of estimates among studies was assessed by the Cochran Q test and I 2 statistic. Meta-regression analyses were conducted to identify the factors influencing the heterogeneity of the pooled prevalence, awareness, treatment, and control rate of hypertension. Results: In total, 45 publications including 193,788 cases and 587,826 subjects were eligible for the analyses. The lowest prevalence was found in the Han group (27.0%), and the highest prevalence was in the Mongolian population (39.8%). The awareness rates ranged from 24.4% to 58.0% in the four ethnic groups. Both the highest treatment and control rates were found in the Mongolian population (50.6% and 16.0%, respectively), whereas the Yi group had the lowest control rate (8.0%). In addition, the study year, the mean age of subjects, mean body mass index of subjects, tobacco use (%), alcohol use (%), residence (urban%), and education (primary school%) had varied effects on heterogeneity. Conclusions: These findings highlight the disparities in prevalence, awareness, treatment, and control rates of hypertension in a different ethnic population of China, which could provide suggestions for making targeted prevention measures.

12.
ACS Appl Mater Interfaces ; 14(47): 52599-52617, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36394998

ABSTRACT

Osteochondral regeneration remains a key challenge because of the limited self-healing ability of the bone and its complex structure and composition. Biomaterials based on endochondral ossification (ECO) are considered an attractive candidate to promote bone repair because they can effectively address the difficulties in establishing vascularization and poor bone regeneration via intramembranous ossification (IMO). However, its clinical application is limited by the complex cellular behavior of ECO and the long time required for induction of the cell cycle. Herein, functionalized microscaffold-hydrogel composites are developed to accelerate the developmental bone growth process via recapitulating ECO. The design comprises arginine-glycine-aspartic acid (RGD)-peptide-modified microscaffolds loaded with kartogenin (KGN) and wrapped with a layer of RGD- and QK-peptide-comodified alginate hydrogel. These microscaffolds enhance the proliferation and aggregation behavior of the human bone marrow mesenchymal stem cells (hBMSCs); the controlled release of kartogenin induces the differentiation of hBMSCs into chondrocytes; and the hydrogel grafted with RGD and QK peptide facilitates chondrocyte hypertrophy, which creates a vascularized niche for osteogenesis and finally accelerates osteochondral repair in vivo. The findings provide an efficient bioengineering approach by sequentially modulating cellular ECO behavior for osteochondral defect repair.


Subject(s)
Osteogenesis , Phthalic Acids , Humans , Hydrogels/pharmacology , Anilides
13.
ChemMedChem ; 17(22): e202200364, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36111842

ABSTRACT

There is an emerging interest in utilizing synthetic multivalent inhibitors that comprise of multiple inhibitor moieties linked on a common scaffold to achieve strong and selective enzyme inhibition. As multivalent inhibition is impacted by valency and linker length, in this study, we explore the effect of multivalent benzamidine inhibitors of varying valency and linker length on plasmin inhibition. Plasmin is an endogenous enzyme responsible for digesting fibrin present in blood clots. Monovalent plasmin(ogen) inhibitors are utilized clinically to treat hyperfibrinolysis-associated bleeding events. Benzamidine is a reversible inhibitor that binds to plasmin's active site. Herein, multivalent benzamidine inhibitors of varying valencies (mono-, bi- and tri-valent) and linker lengths (∼1-12 nm) were synthesized to systematically study their effect on plasmin inhibition. Inhibition assays were performed using a plasmin substrate (S-2251) to determine inhibition constants (Ki). Pentamidine (shortest bivalent) and Tri-AMB (shortest trivalent) were the strongest inhibitors with Ki values of 2.1±0.8 and 3.9±1.7 µM, respectively. Overall, increasing valency and decreasing linker length, increases effective local concentration of the inhibitor and therefore, resulted in stronger inhibition of plasmin via statistical rebinding. This study aids in the design of multivalent inhibitors that can achieve desired enzyme inhibition by means of modulating valency and linker length.


Subject(s)
Benzamidines , Fibrinolysin , Fibrinolysin/chemistry , Fibrinolysin/metabolism , Benzamidines/pharmacology
14.
Hypertens Res ; 45(11): 1754-1762, 2022 11.
Article in English | MEDLINE | ID: mdl-35941357

ABSTRACT

Hypertension (HTN) is a growing contributor to the global disease burden, and it is prevalent among people living at high altitudes (H-ALTs). This study aimed to explore the relationship between altitude and the prevalence of HTN among inhabitants living at H-ALTs. We searched electronic databases, including PubMed, Embase, and Web of Science, up to April 30, 2022. The quality of included studies was assessed using the Joanna Briggs Institute (JBI) checklist for prevalence studies. A total of 1273 articles were screened, and 32 studies (86,487 participants) were eligible for further analyses. The pooled prevalence among highlanders was 28.7%. General additive model (GAM)-based meta-regression analysis was conducted to explore the association between altitude and the prevalence of HTN. A curve-shaped line was found between altitude and the prevalence of HTN (ß = 0.998, p = 0.039) after adjusting for factors including publication year, sample size, age, sex, ethnic group, body mass index (BMI), smoking and alcohol consumption. The turning point was observed at 3300 m. The predictive parameter indicated that the smoothness and goodness of model fit were good (GCV = 0.014, R2 = 0.60, respectively). The findings may provide clues for further mechanistic studies that can improve HTN prevention among highlanders.


Subject(s)
Altitude , Hypertension , Humans , Prevalence , Hypertension/epidemiology , Cross-Sectional Studies , Body Mass Index
15.
J Biopharm Stat ; 32(6): 969-985, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35576472

ABSTRACT

Personalized medicine has gained much attention in the past decades, and identifying the effects of factors is essential for personalized preventions and treatments. Hypertension is a major modifiable risk factor for cardiovascular disease and is influenced by complex factors. In order to decrease the incidence of hypertension effectively, the subjects should be divided into subgroups according to their characteristics. In this study, we proposed to use a heterogeneous logistic regression combined with a concave fusion penalty to analyze the population-based survey data, including common influencing factors of hypertension. The analytic steps include: (1) identifying the most important predictor; (2) estimating subgroup-based heterogeneous effects. In the present context of primary hypertension data, the modeling results showed that the calculated prediction accuracy under our method was greater than 99%, while zero under the classical logistic regression. The findings could provide a practical guide for further individualized measures implementation.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Logistic Models , Risk Factors
16.
Islets ; 14(1): 128-138, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35331085

ABSTRACT

Metabolic dysfunction of ß-cells has been implicated as a contributor to diabetes pathogenesis, and efforts are ongoing to optimize analytical techniques that evaluate islet metabolism. High-resolution respirometry offers sensitive measurements of the respiratory effects of metabolic substrates and customizable manipulation of electron transport chain components, though the delicate nature of islets can pose challenges to conventional analyses. An affordable and reliable option for respirometry is the Oroboros Oxygraph-2 K system, which utilizes a stir bar to circulate reagents around cells. While this technique may be suitable for individual cells or mitochondria, the continual force exerted by the stir bar can have damaging effects on islet integrity. Herein, we demonstrate the protective benefits of a novel 3D-printed islet stabilization device and highlight the destructive effects of conventional Oxygraph analysis on islet integrity. Islet containment did not inhibit cellular responses to metabolic modulatory drugs, as indicated by robust fluctuations in oxygen consumption rates. The average size of wild-type mouse islets was significantly reduced following a standard Mito Stress Test within Oxygraph chambers, with a clear disruption in islet morphology and viability. Alternatively, containment of the islets within the interior chamber of the islet stabilization device yielded preservation of both islet morphology and increased cell viability/survival after respirometry analysis. Collectively, our study introduces a new and easily accessible tool to improve conventional Oxygraph respirometry of pancreatic islets by preserving natural islet structure and function throughout metabolic analysis.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Cell Survival , Islets of Langerhans/metabolism , Mice , Mitochondria/metabolism , Oxygen Consumption
17.
Front Oncol ; 12: 829248, 2022.
Article in English | MEDLINE | ID: mdl-35237523

ABSTRACT

BACKGROUND: Prostate cancer is the second most common cancer in males worldwide, and multitudes of factors have been reported to be associated with prostate cancer risk. OBJECTIVES: We aim to conduct the phenome-wide exposed-omics analysis of the risk factors for prostate cancer and verify the causal associations between them. METHODS: We comprehensively searched published systematic reviews and meta-analyses of cohort studies and conducted another systematic review and meta-analysis of the Mendelian randomization studies investigating the associations between extrinsic exposures and prostate cancer, thus to find all of the potential risk factors for prostate cancer. Then, we launched a phenome-wide two-sample Mendelian randomization analysis to validate the potentially causal relationships using the PRACTICAL consortium and UK Biobank. RESULTS: We found a total of 55 extrinsic exposures for prostate cancer risk. The causal effect of 30 potential extrinsic exposures on prostate cancer were assessed, and the results showed docosahexaenoic acid (DHA) [odds ratio (OR)=0.806, 95% confidence interval (CI): 0.661-0.984, p=0.034], insulin-like growth factor binding protein 3 (IGFBP-3) (OR=1.0002, 95%CI: 1.00004-1.0004, p=0.016), systemic lupus erythematosus (SLE) (OR=0.9993, 95%CI: 0.9986-0.99997, p=0.039), and body mass index (BMI) (OR=0.995, 95%CI: 0.990-0.9999, p=0.046) were associated with prostate cancer risk. However, no association was found between the other 26 factors and prostate cancer risk. CONCLUSIONS: Our study discovered the phenome-wide exposed-omics risk factors profile of prostate cancer, and verified that the IGFBP-3, DHA, BMI, and SLE were causally related to prostate cancer risk. The results may provide new insight into the study of the pathogenesis of prostate cancer.

18.
Sleep Biol Rhythms ; 20(4): 473-480, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38468617

ABSTRACT

Purpose: Antihypertensive medication is an effective way to control blood pressure. However, some studies reported that it may affect patients' sleep quality during the treatment. Due to the inconsistency of present results, a comprehensive systematic review and network meta-analysis are needed. Methods: Electronic databases (MEDLINE, EMBASE, WEB OF SCIENCE, PUBMED) were searched up to April 10th, 2021 including no restriction of publication status. Randomized controlled trials (RCTs) or quasi-experimental studies or cohort studies were eligible. The network meta-analysis was used within a Bayesian framework. Results: Finally, 16 publications (including 12 RCTs and 4 quasi-experimental studies) with 404 subjects were included in this study. Compared to placebo, the results of the network meta-analysis showed that diuretics were effective in improving sleep apnea with a mean difference (MD) of - 15.47 (95% confidence interval [CI]: - 23.56, - 6.59) which was consistent with the direct comparison result (MD: - 17.91; 95% CI - 21.60, - 14.23). In addition, diuretics were effective in increasing nocturnal oxygen saturation with an MD of 3.64 (95% CI 0.07, 7.46). However, the effects of ß-blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, and the others on sleep apnea were not statistically significant. Additionally, the effects of antihypertensive medication on the total sleep time (min), rapid eye movement (%), and sleep efficiency (%) were not statistically significant. Conclusion: Our study found that diuretics could effectively reduce the severity of sleep apnea in hypertensive patients. However, the effects of antihypertensive drugs on sleep characteristics were not found. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-022-00391-8.

19.
J Mater Chem B ; 9(45): 9295-9307, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34698753

ABSTRACT

Impaired fibrinolysis has long been considered as a risk factor for venous thromboembolism. Fibrin clots formed at physiological concentrations are promising substrates for monitoring fibrinolytic performance as they offer clot microstructures resembling in vivo. Here we introduce a fluorescently labeled fibrin clot lysis assay which leverages a unique annular clot geometry assayed using a microplate reader. A physiologically relevant fibrin clotting formulation was explored to achieve high assay sensitivity while minimizing labeling impact as fluorescence isothiocyanate (FITC)-fibrin(ogen) conjugations significantly affect both fibrin polymerization and fibrinolysis. Clot characteristics were examined using thromboelastography (TEG), turbidity, scanning electron microscopy, and confocal microscopy. Sample fibrinolytic activities at varying plasmin, plasminogen, and tissue plasminogen activator (tPA) concentrations were assessed in the present study and results were compared to an S2251 chromogenic assay. The optimized physiologically relevant clot substrate showed minimal reporter-conjugation impact with nearly physiological clot properties. The assay demonstrated good reproducibility, wide working range, kinetic read ability, low limit of detection, and the capability to distinguish fibrin binding-related lytic performance. In combination with its ease for multiplexing, it also has applications as a convenient platform for assessing patient fibrinolytic potential and screening thrombolytic drug activities in personalized medical applications.


Subject(s)
Fibrin/chemistry , Fluorescein-5-isothiocyanate/chemistry , Thrombosis/diagnostic imaging , Crystallization , Fibrinogen/chemistry , Microscopy, Electron, Scanning , Optical Imaging
20.
Blood Coagul Fibrinolysis ; 32(8): 556-563, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34475333

ABSTRACT

Conducting in-vitro thrombosis research presents numerous challenges, the primary of which is working with blood products, whether whole blood or fractionated whole blood, that have limited functional shelf-lives. As a result, being able to significantly prolong the clotting functionality of whole blood via fractionation and recombination promises greater accessibility via resource minimization in the realm of thrombosis research. Whole blood with CPDA1 from healthy volunteers was fractionated and stored as frozen platelet-free plasma (PFP, -20°C), refrigerated packed red blood cells (pRBCs, 4°C) and cryopreserved platelets (-80°C). Subsequent recombination of the above components into their native ratios were tested via thromboelastography (TEG) to capture clotting dynamics over a storage period of 13 weeks in comparison to refrigerated unfractionated WB+CPDA1. Reconstituted whole blood utilizing PFP, pRCBs and cryopreserved platelets were able to maintain clot strength (maximum amplitude) akin to day-0 whole blood even after 13 weeks of storage. Clots formed by reconstituted whole blood exhibited quicker clotting dynamics with nearly two-fold shorter R-times and nearly 1.3-fold increase in fibrin deposition rate as measured by TEG. Storage of fractionated whole blood components, in their respective ideal conditions, provides a means of prolonging the usable life of whole blood for in-vitro thrombosis research. Cryopreserved platelets, when recombined with frozen PFP and refrigerated pRBCs, are able to form clots that nearly mirror the overall clotting profile expected of freshly drawn WB.


Subject(s)
Blood Platelets , Thrombelastography , Blood Coagulation , Blood Preservation , Cryopreservation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...