Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(21): 212501, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072612

ABSTRACT

The cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150 MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations. The remarkable agreement between calculated and measured cross sections in both shape and magnitude validates the molecular structure description of the ^{10}Be ground-state, configured as an α-α core with two valence neutrons occupying π-type molecular orbitals.

2.
Phys Rev Lett ; 124(21): 212502, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530645

ABSTRACT

The structure of a neutron-rich ^{25}F nucleus is investigated by a quasifree (p,2p) knockout reaction at 270A MeV in inverse kinematics. The sum of spectroscopic factors of π0d_{5/2} orbital is found to be 1.0±0.3. However, the spectroscopic factor with residual ^{24}O nucleus being in the ground state is found to be only 0.36±0.13, while those in the excited state is 0.65±0.25. The result shows that the ^{24}O core of ^{25}F nucleus significantly differs from a free ^{24}O nucleus, and the core consists of ∼35% ^{24}O_{g.s.}. and ∼65% excited ^{24}O. The result may infer that the addition of the 0d_{5/2} proton considerably changes neutron structure in ^{25}F from that in ^{24}O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

3.
Phys Rev Lett ; 115(10): 102501, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26382672

ABSTRACT

Differential cross sections of isoscalar and isovector spin-M1 (0(+)→1(+)) transitions are measured using high-energy-resolution proton inelastic scattering at E(p)=295 MeV on (24)Mg, (28)Si, (32)S, and (36)Ar at 0°-14°. The squared spin-M1 nuclear transition matrix elements are deduced from the measured differential cross sections by applying empirically determined unit cross sections based on the assumption of isospin symmetry. The ratios of the squared nuclear matrix elements accumulated up to E(x)=16 MeV compared to a shell-model prediction are 1.01(9) for isoscalar and 0.61(6) for isovector spin-M1 transitions, respectively. Thus, no quenching is observed for isoscalar spin-M1 transitions, while the matrix elements for isovector spin-M1 transitions are quenched by an amount comparable with the analogous Gamow-Teller transitions on those target nuclei.

4.
Phys Rev Lett ; 107(6): 062502, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902316

ABSTRACT

A benchmark experiment on (208)Pb shows that polarized proton inelastic scattering at very forward angles including 0° is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r(skin) = 0.156(-0.021)(+0.025) fm in (208)Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.

5.
Phys Rev Lett ; 99(16): 162503, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995244

ABSTRACT

The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112-124) with inelastic scattering of 400-MeV alpha particles in the angular range 0 degrees -8.5 degrees . We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208Pb and 90Zr very well. From the GMR data, a value of Ktau = -550 +/- 100 MeV is obtained for the asymmetry term in the nuclear incompressibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...