Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402935, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976560

ABSTRACT

This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.

2.
Biomacromolecules ; 24(8): 3545-3556, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37449781

ABSTRACT

Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.


Subject(s)
Micelles , Polymers , Humans , Animals , Mice , Tissue Distribution , Polymers/chemistry , Plasma
3.
J Control Release ; 354: 851-868, 2023 02.
Article in English | MEDLINE | ID: mdl-36681282

ABSTRACT

Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Humans , Animals , Zebrafish , Micelles , Tuberculosis/drug therapy , Antitubercular Agents , Mice, Inbred Strains , Polymers/therapeutic use
4.
Macromol Rapid Commun ; 43(19): e2200318, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35687083

ABSTRACT

After intravenous administration of nanocarriers, plasma proteins may rapidly adsorb onto their surfaces. This process hampers the prediction of the nanocarriers' pharmacokinetics as it determines their physiological identity in a complex biological environment. Toward clinical translation it is therefore an essential prerequisite to investigate the nanocarriers' interaction with plasma proteins. Here, this work evaluates a highly "PEGylated" squaric ester-based nanogel with inherent prolonged blood circulation properties. After incubation with human blood plasma, the nanogels are isolated by asymmetrical flow-field flow fractionation. Multiangle light scattering measurements confirm the absence of significant size increases as well as aggregation upon plasma incubation. However, proteomic analyses by gel electrophoresis find minor absolute amounts of proteins (3 wt%), whereas label-free liquid chromatography mass spectrometry identify 65 enriched proteins. Interestingly, the relative abundance of these proteins is almost similar to their proportion in pure native plasma. Due to the nanogels' hydrated and porous network morphology, it is concluded that the detected proteins rather result from passive diffusion into the nanogel network than from specific interactions at the plasma particle interface. Consequently, these results do not indicate a classical surface protein corona but rather reflect the highly outer and inner stealth-like behavior of the porous hydrogel network.


Subject(s)
Nanoparticles , Protein Corona , Biocompatible Materials , Blood Proteins , Drug Carriers/chemistry , Esters , Humans , Hydrogels , Membrane Proteins , Nanogels , Nanoparticles/chemistry , Polyethylene Glycols , Polyethyleneimine , Porosity , Protein Corona/chemistry , Proteomics
6.
ACS Biomater Sci Eng ; 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35412796

ABSTRACT

Synthetic nanoparticles are interesting to use in the study of ligation with natural biorelevant structures. That is because they present an intermediate situation between reactions onto soluble polymers or onto solid surfaces. In addition, differently functionalized nanoparticles can be separated and studied independently thereafter. So what would be a "patchy functionalization" on a macroscopic surface results in differently functionalized nanoparticles, which can be separated after the interaction with body fluids. This paper will review bioconjugation of such nanoparticles with a special focus on recent results concerning the formation of a protein corona by unspecific adsorption (lower lines of TOC), which presents an unintentional bioconjugation, and on new aspects of intentionally performed bioconjugation by covalent chemistry (upper line). For this purpose, it is important that polymeric nanoparticles without a protein corona can be prepared. This opens, e.g., the possibility to look for special proteins adsorbed as a result of the natural compound ligated to the nanoparticle by covalent chemistry, like the Fc part of antibodies. At the same time, the use of highly reactive, bioorthogonal functional groups (inverse electron demand Diels-Alder cycloaddition) on the nanoparticles allows an efficient ligation after administration inside the body, i.e., in vivo.

7.
ACS Nano ; 15(9): 15191-15209, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34431291

ABSTRACT

Despite considerable progress in the design of multifunctionalized nanoparticles (NPs) that selectively target specific cell types, their systemic application often results in unwanted liver accumulation. The exact mechanisms for this general observation are still unclear. Here we asked whether the number of cell-targeting antibodies per NP determines the extent of NP liver accumulation and also addressed the mechanisms by which antibody-coated NPs are retained in the liver. We used polysarcosine-based peptobrushes (PBs), which in an unmodified form remain in the circulation for >24 h due to the absence of a protein corona formation and low unspecific cell binding, and conjugated them with specific average numbers (2, 6, and 12) of antibodies specific for the dendritic cell (DC) surface receptor, DEC205. We assessed the time-dependent biodistribution of PB-antibody conjugates by in vivo imaging and flow cytometry. We observed that PB-antibody conjugates were trapped in the liver and that the extent of liver accumulation strongly increased with the number of attached antibodies. PB-antibody conjugates were selectively captured in the liver via Fc receptors (FcR) on liver sinusoidal endothelial cells, since systemic administration of FcR-blocking agents or the use of F(ab')2 fragments prevented liver accumulation. Cumulatively, our study demonstrates that liver endothelial cells play a yet scarcely acknowledged role in liver entrapment of antibody-coated NPs and that low antibody numbers on NPs and the use of F(ab')2 antibody fragments are both sufficient for cell type-specific targeting of secondary lymphoid organs and necessary to minimize unwanted liver accumulation.


Subject(s)
Nanoparticles , Receptors, Fc , Endothelial Cells , Liver , Tissue Distribution
8.
Macromol Biosci ; 21(4): e2000414, 2021 04.
Article in English | MEDLINE | ID: mdl-33543588

ABSTRACT

Most nanomaterials acquire a protein corona upon contact with biological fluids. The magnitude of this effect is strongly dependent both on surface and structure of the nanoparticle. To define the contribution of the internal nanoparticle structure, protein corona formation of block copolymer micelles with poly(N-2-hydroxypropylmethacrylamide) (pHPMA) as hydrophilic shell, which are crosslinked-or not-in the hydrophobic core is comparatively analyzed. Both types of micelles are incubated with human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Their size is determined by dynamic light scattering and proteins within the micellar fraction are characterized by gel electrophoresis and quantified by liquid chromatography-high-resolution mass spectrometry-based label-free quantitative proteomics. The analyses reveal only very low amounts of plasma proteins associated with the micelles. Notably, no significant enrichment of plasma proteins is detectable for core-crosslinked micelles, while noncrosslinked micelles show a significant enrichment of plasma proteins, indicative of protein corona formation. The results indicate that preventing the reorganization of micelles (equilibrium with unimers) by core-crosslinking is crucial to reduce the interaction with plasma proteins.


Subject(s)
Cross-Linking Reagents/chemistry , Micelles , Nanostructures/chemistry , Polymers/chemistry , Protein Corona/chemistry , Adsorption , Chemical Phenomena , Chromatography, High Pressure Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Light , Mass Spectrometry , Plasma/metabolism , Polyethylene Glycols/chemistry , Scattering, Radiation
9.
Cells ; 9(8)2020 08 15.
Article in English | MEDLINE | ID: mdl-32824208

ABSTRACT

Macrophages are the front soldiers of the innate immune system and are vital for immune defense, tumor surveillance, and tissue homeostasis. In chronic diseases, including cancer and liver fibrosis, macrophages can be forced into an immunosuppressive and profibrotic M2 phenotype. M2-type macrophages overexpress the mannose receptor CD206. Targeting these cells via CD206 and macrophage repolarization towards an immune stimulating and antifibrotic M1 phenotype through RNA interference represents an appealing therapeutic approach. We designed nanohydrogel particles equipped with mannose residues on the surface (ManNP) that delivered siRNA more efficiently to M2 polarized macrophages compared to their untargeted counterparts (NonNP) in vitro. The ManNP were then assessed for their in vivo targeting potential in mice with experimental liver fibrosis that is characterized by increased profibrotic (and immunosuppressive) M2-type macrophages. Double-labelled siRNA-loaded ManNP carrying two different near infrared labels for siRNA and ManNP showed good biocompatibility and robust uptake in fibrotic livers as assessed by in vivo near infrared imaging. siRNA-ManNP were highly colocalized with CD206+ M2-type macrophages on a cellular level, while untargeted NP (NonNP) showed little colocalization and were non-specifically taken up by other liver cells. ManNP did not induce hepatic inflammation or kidney dysfunction, as demonstrated by serological analysis. In conclusion, α-mannosyl-functionalized ManNP direct NP towards M2-type macrophages in diseased livers and prevent unspecific uptake in non-target cells. ManNP are promising vehicles for siRNA and other drugs for immunomodulatory treatment of liver fibrosis and liver cancer.


Subject(s)
Drug Delivery Systems/methods , Hydrogels/chemistry , Immune Tolerance , Immunotherapy/methods , Liver Cirrhosis/therapy , Macrophages/immunology , Mannose/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Female , Hep G2 Cells , Humans , Lectins, C-Type/metabolism , Liver/pathology , Liver Cirrhosis/immunology , Macrophage Activation , Macrophages/drug effects , Macrophages/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Receptors, Cell Surface/metabolism , THP-1 Cells
10.
Small ; 16(39): e2002162, 2020 10.
Article in English | MEDLINE | ID: mdl-32856393

ABSTRACT

A recent paper demonstrated that the formation of a protein corona is not a general property of all types of nanosized objects. In fact, it varies between a massive aggregation of plasma proteins onto the nanoparticle down to traces (e.g., a few proteins per 10 nanoparticles), which can only be determined by mass spectrometry in comparison to appropriate negative controls and background subtraction. Here, differences between various types of nanosized objects are discussed in order to determine general structure-property-relations from a physico-chemical viewpoint. It is highlighted that "not all nanoparticles are alike" and shown that their internal morphology, especially the difference between a strongly hydrated/swollen shell versus a sharp "hard" surface and its accessibility, is most relevant for biomedical applications.


Subject(s)
Nanoparticles , Protein Corona , Blood Proteins/chemistry , Mass Spectrometry , Nanoparticles/chemistry , Protein Corona/chemistry
11.
Small ; 16(18): e1907574, 2020 05.
Article in English | MEDLINE | ID: mdl-32250017

ABSTRACT

The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.


Subject(s)
Nanoparticles , Protein Corona , Humans , Hydrophobic and Hydrophilic Interactions , Particle Size , Peptides , Polyethylene Glycols , Sarcosine/analogs & derivatives
12.
Acta Biomater ; 100: 338-351, 2019 12.
Article in English | MEDLINE | ID: mdl-31586726

ABSTRACT

Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary. The otherwise commonly applied delivery agents such as LipofectamineⓇ or strongly cationic polymer structures are not only unsuitable for in vivo experiments, but are also highly toxic to immune cells. This study aimed to improve the design of polymeric carrier systems for small interfering RNA, which would allow efficient internalization into CD8+T-cells without affecting their viability and thereby removing the current limitations in the field. Here, two new carrier systems for small interfering RNA were tested. One is a cationic diblock copolymer, in which less than 10% of the monomers were modified with triphenylphosphonium cations. This moiety is lipophilic, promotes uptake and it is mostly known for its mitotropic properties. Furthermore, cationic nanohydrogel particles were synthesized in exceedingly small sizes (Rh < 14 nm). After full physicochemical characterization of the two carriers, extensive cytotoxicity studies were performed and the concentration dependent uptake into CD8+T-cells was tested in correlation to incubation time and protein content of the surrounding medium. Both carriers facilitated efficient complexation of siRNA as well as significant internalization into primary human cells in less than three hours of incubation. In addition, neither of the delivery systems reduced cell viability making them good candidates to transport siRNA into CD8+T-cells efficiently. STATEMENT OF SIGNIFICANCE: This study provides insights into the design of polymeric delivery agents as the method of choice for overcoming the limitations of cell manipulation. Until now, CD8+T-cells, which have become a treatment tool for currently fatal diseases, have not yet been made accessible for gene silencing by polymeric siRNA carrier systems. Choosing appropriate modification approaches for two chemically different polymer structures, we were, in both cases, able to achieve significant uptake in these cells even at low concentrations and without inducing cytotoxicity. These results remove current limitations and pave the way for bioengineering via gene therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Nanoparticles/chemistry , Particle Size , RNA Transport , RNA, Small Interfering/metabolism , Cations , Cytotoxicity, Immunologic , Endocytosis , Humans , Hydrogels/chemistry , Organophosphorus Compounds/chemistry , Polymers/chemistry
13.
Biomacromolecules ; 20(10): 3786-3797, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31535846

ABSTRACT

Fast and bioorthogonally reacting nanoparticles are attractive tools for biomedical applications such as tumor pretargeting. In this study, we designed an amphiphilic block copolymer system based on HPMA using different strategies to introduce the highly reactive click units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or statistical into the hydrophobic block. This reactive group undergoes a rapid, bioorthogonal inverse electron-demand Diels-Alder reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently, this polymer platform was used for the preparation of different Tz-covered nanoparticles, such as micelles and colloids. Thereby it was found that the reactivity of the polymeric micelles is comparable to that of the low molar mass tetrazines. The core-cross-linked micelles can be successfully conjugated at rather low concentrations to large biomacromolecules like antibodies, not only in physiological buffer, but also in human blood plasma, which was confirmed by fluorescence correlation spectroscopy (FCS).


Subject(s)
Cycloaddition Reaction/methods , Methacrylates/chemistry , Nanoparticles/chemistry , Aza Compounds/chemistry , Benzene Derivatives/chemistry , Click Chemistry/methods , Colloids/chemistry , Cross-Linking Reagents/chemistry , Micelles
14.
Macromol Biosci ; 19(7): e1900162, 2019 07.
Article in English | MEDLINE | ID: mdl-31173461

ABSTRACT

Immunosuppressive M2 macrophages govern the immunophathogenic micromilieu in many severe diseases including cancer or fibrosis, thus, their re-polarization through RNA interference is a promising concept to support combinatorial therapies. For targeted siRNA delivery, however, safe and stable carriers are required that manage cell specific transport to M2 macrophages. Here, siRNA-loaded cationic nanogels are reported with α-mannosyl decorated surfaces that target and modify M2 macrophages selectively. Via amphiphilic precursor block copolymers bearing one single α-mannosyl moiety at their chain end mannosylated cationic nanohydrogel particles (ManNP) were obtained of 20 nm diameter determined by dynamic light scattering and cryogenic electron transmission microscopy. α-Mannosyl surface modification is confirmed by agglutination with concanavalin A. SiRNA-loaded ManNP preferentially targets the overexpressed mannose receptor CD206 on M2 macrophages, as shown by in vitro cell uptake studies in M2 polarized primary macrophages. This specificity is confirmed, since ManNP uptake could be reduced by blocking of CD206 with mannan. Effective ManNP-guided siRNA delivery is confirmed by sequence-specific gene knockdown of CSF-1R in M2-type macrophages exclusively, while the expression levels in M1-polarized macrophages is not affected. In conclusion, α-mannosyl-functionalized ManNPs are promising universal siRNA carriers for targeted immunomodulatory treatment of immunosuppressive macrophages.


Subject(s)
Gene Knockdown Techniques , Hydrogels/chemistry , Immunosuppression Therapy , Macrophages/metabolism , Mannose/chemistry , Nanoparticles/chemistry , 3T3 Cells , Animals , Cations , Hep G2 Cells , Humans , Mice , Nanoparticles/ultrastructure , RAW 264.7 Cells
15.
Macromol Biosci ; 19(6): e1800481, 2019 06.
Article in English | MEDLINE | ID: mdl-30968573

ABSTRACT

The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate-co-hymecromone-methacrylate allow the preparation of multifunctionalized core-crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18-MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle-in addition-via a click reaction with the terminal azide. Thereafter, the differently functionalized micelles are chemically and biologically characterized. While the core-crosslinked micelles without carbohydrate units are hardly bound by DCs, mannose and trimannose functionalization lead to a strong binding. Flow cytometric analysis and blocking studies employing mannan suggest the requirement of the mannose receptor and DC-SIGN for effective micelle binding. It could be suppressed by blocking with mannan. Adjuvant-loaded micelles functionalized with mannose and trimannose activate DCs, and DCs preincubated with antigen-conjugated micelles induce proliferation of antigen-specific CD8+ T cells.


Subject(s)
Drug Delivery Systems , Immune System/drug effects , Methacrylates/chemistry , Nanoparticles/chemistry , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Azides/chemistry , Azides/pharmacology , Click Chemistry , Dendritic Cells/drug effects , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Methacrylates/chemical synthesis , Methacrylates/pharmacology , Micelles , Ovalbumin/chemistry , Ovalbumin/pharmacology , Particle Size , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Polymers/chemistry , Polymers/pharmacology
16.
Am J Nucl Med Mol Imaging ; 9(1): 67-83, 2019.
Article in English | MEDLINE | ID: mdl-30911437

ABSTRACT

Polymeric micelles are of increasing interest as drug delivery vehicles since they can accumulate in tumor tissue through EPR effect and deliver their hydrophobic cargo. The pharmacology can be visualized and quantified noninvasively by molecular imaging techniques. Here, a novel, fast and efficient technique for radiolabeling various HPMA-LMA based micellar aggregates with hydrophobic oxine-complexes of the trivalent radiometals 68Ga and 111In was investigated. The radiometal-oxine complexes resemble the hydrophobic drug 111In[In]-oxine considered for the diagnosis of infection and inflammation. Promising in vitro stability lead to in vivo evaluation in healthy mice in terms of quantitative ex vivo organ distribution. The results show that while the hydrophobic radiometal-oxine complexes were safely encapsulated in aqueous saline, they left the polymeric micelles slowly in contact with blood serum and more rapidly in vivo. Due to the similarity between the radiometal complexes and hydrophobic drugs transported in the polymeric micelles this has significant implications for further strategies on transport mechanisms of hydrophobically encapsulated drugs.

17.
J Vis Exp ; (135)2018 05 20.
Article in English | MEDLINE | ID: mdl-29863684

ABSTRACT

This paper focuses on the microfluidic process (and its parameters) to prepare actuating particles from liquid crystalline elastomers. The preparation usually consists in the formation of droplets containing low molar mass liquid crystals at elevated temperatures. Subsequently, these particle precursors are oriented in the flow field of the capillary and solidified by a crosslinking polymerization, which produces the final actuating particles. The optimization of the process is necessary to obtain the actuating particles and the proper variation of the process parameters (temperature and flow rate) and allows variations of size and shape (from oblate to strongly prolate morphologies) as well as the magnitude of actuation. In addition, it is possible to vary the type of actuation from elongation to contraction depending on the director profile induced to the droplets during the flow in the capillary, which again depends on the microfluidic process and its parameters. Furthermore, particles of more complex shapes, like core-shell structures or Janus particles, can be prepared by adjusting the setup. By the variation of the chemical structure and the mode of crosslinking (solidification) of the liquid crystalline elastomer, it is also possible to prepare actuating particles triggered by heat or UV-vis irradiation.


Subject(s)
Elastomers/chemistry , Liquid Crystals/chemistry , Microfluidics/methods
18.
J Am Chem Soc ; 140(19): 6088-6094, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29715027

ABSTRACT

Well-defined nanostructures composed of conjugated polymers have attracted significant attention due to their intriguing electronic and optical properties. However, precise control of the size and uniformity of these semiconducting nanostructures is still rare and challenging, despite recent advances in strategies to obtain self-assembled nanostructures with narrow dispersions. Herein, we demonstrate the preparation of fluorescent conjugated block copolymers by one-shot polymerization and rapid formation of nanofibers in a few minutes via light-induced crystallization-driven self-assembly, driven by facile cis-to- trans photoisomerization of its poly( p-phenylenevinylene) blocks. Furthermore, living self-assembly was possible, allowing not only nanofibers with excellent length control and narrow size distribution but also ABA triblock comicelles and gradient comicelles, to be produced by seeded growth. Lastly, the seeded growth could be activated and deactivated repeatedly by switching the light on and off, analogous to light-induced living radical polymerization.

19.
EJNMMI Res ; 8(1): 16, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29488030

ABSTRACT

BACKGROUND: In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. RESULTS: Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. CONCLUSIONS: This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

20.
Nucl Med Biol ; 58: 59-66, 2018 03.
Article in English | MEDLINE | ID: mdl-29413458

ABSTRACT

BACKGROUND: For the evaluation of macromolecular drug delivery systems suitable pre-clinical monitoring of potential nanocarrier systems is needed. In this regard, both short-term as well as long-term in vivo tracking is crucial to understand structure-property relationships of polymer carrier systems and their resulting pharmacokinetic profile. Based on former studies revealing favorable in vivo characteristics for 18F-labeled random (ran) copolymers consisting of N-(2-hydroxypropyl)methacrylamide (HPMA) and lauryl methacrylate (LMA) - including prolonged plasma half-life as well as enhanced tumor accumulation - the presented work focuses on their long-term investigation in the living organism. METHODS: In this respect, four different HPMA-based polymers (homopolymers as well as random copolymers with LMA as hydrophobic segment) were synthesized and subsequent radioactive labeling was accomplished via the longer-lived radioisotope 131I. In vivo results, concentrating on the pharmacokinetics of a high molecular weight HPMA-ran-LMA copolymer, were obtained by means of biodistribution and metabolism studies in the Walker 256 mammary carcinoma model over a time-span of up to three days. Besides, a direct comparison with the 18F-radiolabeled polymer was drawn. To consider physico-chemical differences between the differently labeled polymer (18F or 131I) on the critical micelle concentration (CMC) and the size of the polymeric micelles, those properties were determined using the 19F- or 127I-functionalized polymer. Special emphasis was laid on the time-dependent correlation between blood circulation properties and corresponding tumor accumulation, particularly regarding the enhanced permeability and retention (EPR) effect. RESULTS: Studies revealed, at first, differences in the short time (2h) body distribution, despite the very similar properties (molecular structure, CMC and size of the micellar aggregates) of the non-radioactive 19F- and 127I-functionalized polymers. Long-term investigations with the 131I-labeled polymer demonstrated that, despite a polymer clearance from the blood within 72h, there was still an increase in tumor uptake observed over time. Regarding the stability of the 131I-label, ex vivo biodistribution experiments, considering the uptake in the thyroid, indicated low metabolism rates. CONCLUSION: The observed in vivo characteristics strongly underline the EPR effect. The findings illustrate the need to combine information of different labeling approaches and in vivo evaluation techniques to generate an overall pharmacokinetic picture of potential nanocarriers in the pre-clinical setting. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENTS: The in vivo behavior of the investigated HPMA-ran-LMA copolymer demonstrates great potential in terms of an effective accumulation in the tumor.


Subject(s)
Iodine Radioisotopes , Lauric Acids/chemistry , Lauric Acids/pharmacokinetics , Methacrylates/chemistry , Methacrylates/pharmacokinetics , Polymers/chemistry , Polymers/pharmacokinetics , Animals , Cell Line, Tumor , Isotope Labeling , Lauric Acids/metabolism , Methacrylates/metabolism , Polymers/metabolism , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL