Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Vaccine ; 37(2): 248-257, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30497833

ABSTRACT

The efforts for the development and testing of vaccines against Trypanosoma cruzi infection have increased during the past years. We have designed a TcVac series of vaccines composed of T. cruzi derived, GPI-anchored membrane antigens. The TcVac vaccines have been shown to elicit humoral and cellular mediated immune responses and provide significant (but not complete) control of experimental infection in mice and dogs. Herein, we aimed to test two immunization protocols for the delivery of DNA-prime/DNA-boost vaccine (TcVac1) composed of TcG2 and TcG4 antigens in a BALB/c mouse model. Mice were immunized with TcVac1 through intradermal/electroporation (IDE) or intramuscular (IM) routes, challenged with T. cruzi, and evaluated during acute phase of infection. The humoral immune response was evaluated through the assessment of anti-TcG2 and anti-TcG4 IgG subtypes by using an ELISA. Cellular immune response was assessed through a lymphocyte proliferation assay. Finally, clinical and morphopathological aspects were evaluated for all experimental animals. Our results demonstrated that when comparing TcVac1 IDE delivery vs IM delivery, the former induced significantly higher level of antigen-specific antibody response (IgG2a + IgG2b > IgG1) and lymphocyte proliferation, which expanded in response to challenge infection. Histological evaluation after challenge infection showed infiltration of inflammatory cells (macrophages and lymphocytes) in the heart and skeletal tissue of all infected mice. However, the largest increase in inflammatory infiltrate was observed in TcVac1_IDE/Tc mice when compared with TcVac1_IM/Tc or non-vaccinated/infected mice. The extent of tissue inflammatory infiltrate was directly associated with the control of tissue amastigote nests in vaccinated/infected (vs. non-vaccinated/infected) mice. Our results suggest that IDE delivery improves the protective efficacy of TcVac1 vaccine against T. cruzi infection in mice when compared with IM delivery of the vaccine.


Subject(s)
Chagas Disease/prevention & control , Electroporation/methods , Protozoan Vaccines/administration & dosage , Vaccination/methods , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Cellular , Immunization, Secondary , Immunoglobulin G/blood , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Protozoan Vaccines/immunology , Skin Absorption , Trypanosoma cruzi/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology
2.
Parasite ; 24: 17, 2017.
Article in English | MEDLINE | ID: mdl-28560955

ABSTRACT

During Trypanosoma cruzi infection, oxidative stress is considered a contributing factor for dilated cardiomyopathy development. In this study, the effects of astaxanthin (ASTX) were evaluated as an alternative drug treatment for Chagas disease in a mouse model during the acute infection phase, given its anti-inflammatory, immunomodulating, and anti-oxidative properties. ASTX was tested in vitro in parasites grown axenically and in co-culture with Vero cells. In vivo tests were performed in BALB/c mice (4-6 weeks old) infected with Trypanosoma cruzi and supplemented with ASTX (10 mg/kg/day) and/or nifurtimox (NFMX; 100 mg/kg/day). Results show that ASTX has some detrimental effects on axenically cultured parasites, but not when cultured with mammalian cell monolayers. In vivo, ASTX did not have any therapeutic value against acute Trypanosoma cruzi infection, used either alone or in combination with NFMX. Infected animals treated with NFMX or ASTX/NFMX survived the experimental period (60 days), while infected animals treated only with ASTX died before day 30 post-infection. ASTX did not show any effect on the control of parasitemia; however, it was associated with an increment in focal heart lymphoplasmacytic infiltration, a reduced number of amastigote nests in cardiac tissue, and less hyperplasic spleen follicles when compared to control groups. Unexpectedly, ASTX showed a negative effect in infected animals co-treated with NFMX. An increment in parasitemia duration was observed, possibly due to ASTX blocking of free radicals, an anti-parasitic mechanism of NFMX. In conclusion, astaxanthin is not recommended during the acute phase of Chagas disease, either alone or in combination with nifurtimox.


Subject(s)
Chagas Disease/drug therapy , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Chlorocebus aethiops , Disease Models, Animal , Drug Therapy, Combination , Female , Heart/parasitology , Malondialdehyde/blood , Mice , Mice, Inbred BALB C , Myocardium/pathology , Nifurtimox/pharmacology , Nifurtimox/therapeutic use , Nifurtimox/toxicity , Organ Size , Parasitemia , Spleen/parasitology , Spleen/pathology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/toxicity , Vero Cells/drug effects , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Xanthophylls/toxicity
3.
PLoS Negl Trop Dis ; 5(5): e1050, 2011.
Article in English | MEDLINE | ID: mdl-21625470

ABSTRACT

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. METHODS: We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. RESULTS: Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8(+) T cell proliferation and IFN-γ production, and suppression of phagocytes' activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. CONCLUSIONS: Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease.


Subject(s)
Chagas Disease/prevention & control , Immunization, Secondary/methods , Protozoan Vaccines/immunology , Vaccination/methods , Vaccines, DNA/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/genetics , Animals , Antibodies, Protozoan/blood , CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Cytokines/administration & dosage , Cytokines/genetics , Disease Models, Animal , Dogs , Enzyme-Linked Immunosorbent Assay , Female , Hemagglutination Tests , Male , Myocardium/pathology , Parasitemia/immunology , Parasitemia/prevention & control , Plasmids , Protozoan Vaccines/administration & dosage , Th1 Cells/immunology , Vaccines, DNA/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL