Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459870

ABSTRACT

In the present study, we identified and characterized two defensin-like peptides in an antifungal fraction obtained from Capsicum chinense pepper fruits and inhibited the growth of Colletotrichum scovillei, which causes anthracnose. AMPs were extracted from the pericarp of C. chinense peppers and subjected to ion exchange, molecular exclusion, and reversed-phase in a high-performance liquid chromatography system. We investigated the endogenous increase in reactive oxygen species (ROS), the loss of mitochondrial functioning, and the ultrastructure of hyphae. The peptides obtained from the G3 fraction through molecular exclusion chromatography were subsequently fractionated using reverse-phase chromatography, resulting in the isolation of fractions F1, F2, F3, F4, and F5. The F1-Fraction suppressed C. scovillei growth by 90, 70.4, and 44% at 100, 50, and 25 µg mL-1, respectively. At 24 h, the IC50 and minimum inhibitory concentration were 21.5 µg mL-1 and 200 µg mL-1, respectively. We found an increase in ROS, which may have resulted in an oxidative burst, loss of mitochondrial functioning, and cytoplasm retraction, as well as an increase in autophagic vacuoles. MS/MS analysis of the F1-Fraction indicated the presence of two defensin-like proteins, and we were able to identify the expression of three defensin sequences in our C. chinense fruit extract. The F1-Fraction was also found to inhibit the activity of insect α-amylases. In summary, the F1-Fraction of C. chinense exhibits antifungal activity against a major pepper pathogen that causes anthracnose. These defensin-like compounds are promising prospects for further research into antifungal and insecticide biotechnology applications. © 2024 Society of Chemical Industry.

2.
Article in English | MEDLINE | ID: mdl-38117407

ABSTRACT

Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.

3.
Biochim Biophys Acta Biomembr ; 1863(11): 183697, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34274319

ABSTRACT

Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.


Subject(s)
Erythrocyte Membrane/metabolism , Phospholipids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Calcium/chemistry , Calcium/metabolism , Erythrocyte Membrane/chemistry , Humans , Phospholipids/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
4.
Methods Mol Biol ; 2151: 197-210, 2020.
Article in English | MEDLINE | ID: mdl-32452006

ABSTRACT

Septins are dynamic filament-forming proteins that are recognized as important components of the cytoskeleton and are involved in numerous functions inside the cells, such as cytokinesis, exocytosis, and ciliogenesis and even in defense against pathogenic bacteria. Despite being highly conserved in eukaryotes, there is scarce literature on the role of septins in organisms other than humans and yeast. Therefore, septins from Schistosoma mansoni represent an interesting model to study an unexplored branch of this protein family. Here we described standard protocols for recombinant production and initial characterization of septins from S. mansoni. Septins are notably difficult to purify, mostly due to their tendency to assemble into filaments. Therefore, specific protocols to stabilize these proteins have been developed. In this chapter, we systematically describe protocols to clone, express, and purify schistosome septins. We also describe the use of circular dichroism to assess the folding and stability of septins and use of chromatography to characterize their oligomeric state, bound guanine nucleotide, and GTP hydrolysis. We expect that these protocols may help researchers involved in the study of schistosome septins as well as assist to establish protocols for septins from other organisms.


Subject(s)
Biophysical Phenomena , Schistosoma mansoni/metabolism , Septins/metabolism , Animals , Circular Dichroism , Cross-Linking Reagents/chemistry , GTP Phosphohydrolases/metabolism , Nucleotides/metabolism , Protein Domains , Protein Multimerization , Septins/chemistry , Septins/isolation & purification
5.
J Physiol ; 598(9): 1695-1705, 2020 05.
Article in English | MEDLINE | ID: mdl-31228261

ABSTRACT

The control of calcium influx at the plasma membrane by endoplasmic reticulum (ER) calcium stores, a process common to invertebrates and vertebrates, is central to physiological calcium signalling and cellular calcium balance. Stromal interaction molecule 1 (STIM1) is a calcium sensor and regulatory protein localized to the ER. ORAI1 is a calcium channel in the plasma membrane (PM). In outline, STIM1 senses an ER-luminal calcium decrease, relocalizes to ER-PM junctions, and recruits and gates ORAI1 channels. Recent work, reviewed here, has offered detailed insight into the process of sensing and communicating ER calcium-store depletion, and particularly into the STIM1 conformational change that is the basis for communication between the ER and the PM.


Subject(s)
Calcium , Membrane Proteins , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , ORAI1 Protein , Stromal Interaction Molecule 1/metabolism
6.
Mol Biochem Parasitol ; 231: 111187, 2019 07.
Article in English | MEDLINE | ID: mdl-31103556

ABSTRACT

Nucleoside diphosphate kinases (NDPKs) are crucial to keep the high triphosphate nucleotide levels in the biological process. The enzymatic mechanism has been extensively described; however, the structural characteristics and kinetic parameters have never been fully determined. In Schistosoma mansoni, NDPK (SmNDPK) is directly involved in the pyrimidine and purine salvage pathways, being essential for nucleotide metabolism. The SmNDPK enzymatic activity is the highest of the known purine metabolisms when compared to the mammalian NDPKs, suggesting the importance of this enzyme in the worm metabolism. Here, we report the recombinant expression of SmNDPK that resulted in 1.7 and 1.9 Å apo-form structure in different space-groups, as well as the 2.1 Å SmNDPK.ADP complex. The binding and kinetic assays reveal the ATP-dependence for enzyme activation. Moreover, in situ hybridization showed that SmNDPK transcripts are found in reproductive organs and in the esophagus gland of adult worms, which can be intrinsically related with the oviposition and digestive processes. These results will help us fully understand the crucial participation of this enzyme in Schistosoma mansoni and its importance for the pathology of the disease.


Subject(s)
Helminth Proteins/chemistry , Helminth Proteins/metabolism , Nucleoside-Diphosphate Kinase/chemistry , Nucleoside-Diphosphate Kinase/metabolism , Schistosoma mansoni/enzymology , Schistosomiasis mansoni/parasitology , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Esophagus/chemistry , Esophagus/enzymology , Female , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/enzymology , Helminth Proteins/genetics , Humans , Kinetics , Male , Models, Molecular , Nucleoside-Diphosphate Kinase/genetics , Schistosoma mansoni/genetics , Schistosoma mansoni/metabolism , Sequence Alignment
7.
Mol Biochem Parasitol ; 229: 24-34, 2019 04.
Article in English | MEDLINE | ID: mdl-30772423

ABSTRACT

Schistosoma mansoni, the parasite responsible for schistosomiasis, lacks the "de novo" purine biosynthetic pathway and depends entirely on the purine salvage pathway for the supply of purines. Numerous reports of praziquantel resistance have been described, as well as stimulated efforts to develop new drugs against schistosomiasis. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme of the purine salvage pathway. Here, we describe a crystallographic structure of the S. mansoni HPGRT-1 (SmHGPRT), complexed with IMP at a resolution of 2.8 Ǻ. Four substitutions were identified in the region of the active site between SmHGPRT-1 and human HGPRT. We also present data from RNA-Seq and WISH, suggesting that some isoforms of HGPRT might be involved in the process related to sexual maturation and reproduction in worms; furthermore, its enzymatic assays show that the isoform SmHGPRT-3 does not present the same catalytic efficiency as other isoforms. Finally, although other studies have previously suggested this enzyme as a potential antischistosomal chemotherapy target, the kinetics parameters reveal the impossibility to use SmHGPRT as an efficient chemotherapeutic target.


Subject(s)
Helminth Proteins/chemistry , Helminth Proteins/genetics , Hypoxanthine Phosphoribosyltransferase/chemistry , Hypoxanthine Phosphoribosyltransferase/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Schistosoma mansoni/enzymology , Amino Acid Sequence , Animals , Catalytic Domain , Helminth Proteins/metabolism , Hypoxanthine Phosphoribosyltransferase/metabolism , Isoenzymes/metabolism , Kinetics , Molecular Sequence Data , Reproduction , Schistosoma mansoni/chemistry , Schistosoma mansoni/genetics , Schistosoma mansoni/physiology , Sequence Alignment
8.
Nat Commun ; 9(1): 4536, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382093

ABSTRACT

Stromal interaction molecule 1 (STIM1) monitors ER-luminal Ca2+ levels to maintain cellular Ca2+ balance and to support Ca2+ signalling. The prevailing view has been that STIM1 senses reduced ER Ca2+ through dissociation of bound Ca2+ from a single EF-hand site, which triggers a dramatic loss of secondary structure and dimerization of the STIM1 luminal domain. Here we find that the STIM1 luminal domain has 5-6 Ca2+-binding sites, that binding at these sites is energetically coupled to binding at the EF-hand site, and that Ca2+ dissociation controls a switch to a second structured conformation of the luminal domain rather than protein unfolding. Importantly, the other luminal-domain Ca2+-binding sites interact with the EF-hand site to control physiological activation of STIM1 in cells. These findings fundamentally revise our understanding of physiological Ca2+ sensing by STIM1, and highlight molecular mechanisms that govern the Ca2+ threshold for activation and the steep Ca2+ concentration dependence.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/metabolism , Animals , Binding Sites , Calorimetry , Cysteine/metabolism , Deuterium Exchange Measurement , Fluorescence , HeLa Cells , Humans , Mice , Mutation/genetics , Protein Domains , Protein Structure, Secondary , Solubility , Structure-Activity Relationship
9.
PLoS One ; 13(9): e0203532, 2018.
Article in English | MEDLINE | ID: mdl-30192840

ABSTRACT

Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 µM for cytosine, and a KM of 76.3 µM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity of SmPNP2 active site alter the architecture of the nucleoside base binding site thus permitting an alternative binding mode for nucleosides, with a 180° rotation from the canonical binding mode. The remarkable plasticity of this binding site enhances our understanding of the correlation between structure and nucleotide selectivity, thus suggesting new ways to analyse PNP activity.


Subject(s)
Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Adenosine/metabolism , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cytidine/metabolism , Cytosine/metabolism , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Inosine/metabolism , Kinetics , Models, Molecular , Mutation , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Purine-Nucleoside Phosphorylase/genetics , Schistosoma mansoni/chemistry , Substrate Specificity
10.
Bioinform Biol Insights ; 12: 1177932218763363, 2018.
Article in English | MEDLINE | ID: mdl-29568220

ABSTRACT

Leishmania infantum chagasi is an intracellular protozoan parasite responsible for visceral leishmaniasis, a fatal disease in humans. Heparin-binding proteins (HBPs) are proteins that bind to carbohydrates present in glycoproteins or glycolipids. Evidence suggests that HBPs present on Leishmania surface participate in the adhesion and invasion of parasites to tissues of both invertebrate and vertebrate hosts. In this study, we identified the product with an HSP90 (heat shock protein 90) domain encoded by lipophosphoglycan (LPG3) gene as a L infantum chagasi HBP (HBPLc). Structural analysis using the LPG3 recombinant protein suggests that it is organized as a tetramer. Binding analysis confirms that it is capable of binding heparin with micromolar affinity. Inhibition of adenosine triphosphatase activity in the presence of heparin, molecular modeling, and in silico docking analysis suggests that heparin-binding site superimposes with the adenosine triphosphate-binding site. Together, these results show new properties of LPG3 and suggest an important role in leishmaniasis.

11.
Mol Biochem Parasitol ; 214: 82-86, 2017 06.
Article in English | MEDLINE | ID: mdl-28392476

ABSTRACT

Schistosoma mansoni depends upon the purine salvage pathway to obtain purine nucleotides; therefore, enzymes from this pathway are essential for parasite survival. Here, we focused on the adenine phosphoribosyltransferase (APRT) enzyme, which catalyzes the condensation reaction between adenine and PRPP (5-phosphoribosylpyrophosphate) to produce AMP and PPi. Kinetic experiments using the heterologously expressed protein of one APRT isoform from S. mansoni indicate that it is catalytically active, and whole-mount in situ hybridization studies indicate that the transcripts of this protein are concentrated in the posterior region of the ovary and vitellaria of female adult worms. Moreover, a phylogenetic analysis has shown that APRT exists in multiple copies originating from gene duplications at the base of the Schistosoma genus. Other enzymes from the purine and pyrimidine salvage pathways have also been found to present multiple copies in schistosomes, suggesting that evolutionary pressure to diversify these genes' families may be related to a specialized role in parasite reproduction.


Subject(s)
Adenine Phosphoribosyltransferase/analysis , Ovary/enzymology , Schistosoma mansoni/enzymology , Adenine Phosphoribosyltransferase/genetics , Adenosine Monophosphate/metabolism , Animal Structures/enzymology , Animals , Evolution, Molecular , Female , Gene Duplication , Phosphates/metabolism , Phylogeny , Schistosoma mansoni/genetics
12.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3490-3497, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27639541

ABSTRACT

BACKGROUND: The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. METHODS: A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. RESULTS: S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. CONCLUSION: S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. GENERAL SIGNIFICANCE: Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.


Subject(s)
Esophagus/metabolism , Inflammation/pathology , Protozoan Proteins/metabolism , S100 Proteins/metabolism , Schistosoma mansoni/metabolism , Alternative Splicing/genetics , Animals , Circular Dichroism , Cricetinae , Electrophoresis, Polyacrylamide Gel , Humans , Protein Binding , Protein Structure, Secondary , Surface Plasmon Resonance , Two-Hybrid System Techniques
13.
Biochim. Biophys. Acta, Gen. Subj. ; 1861(1): 3490-3497, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13620

ABSTRACT

Background: The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. Methods: A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. Results: S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. Conclusion: S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. General significance: Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.

14.
Biochimie ; 131: 96-105, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27687162

ABSTRACT

Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.


Subject(s)
Guanosine Triphosphate/metabolism , Helminth Proteins/metabolism , Schistosoma mansoni/metabolism , Septins/metabolism , Animals , Binding Sites/genetics , Biophysical Phenomena , Circular Dichroism , Guanosine Diphosphate/metabolism , Helminth Proteins/chemistry , Helminth Proteins/genetics , Hydrogen-Ion Concentration , Hydrolysis , Liposomes/chemistry , Liposomes/metabolism , Multigene Family , Protein Binding , Protein Multimerization , Schistosoma mansoni/genetics , Septins/chemistry , Septins/genetics , Spectrometry, Fluorescence , Temperature , Thermodynamics
15.
Braz. arch. biol. technol ; 55(4): 569-576, July-Aug. 2012. ilus, tab
Article in English | LILACS | ID: lil-645409

ABSTRACT

Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.

16.
Curr Microbiol ; 61(6): 554-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20422191

ABSTRACT

Polystyrene surfaces were conditioned with surfactin and rhamnolipid biosurfactants and then assessed regarding the attachment of Staphylococcus aureus, Listeria monocytogenes, and Micrococcus luteus. The effect of different temperatures (35, 25, and 4°C) on the anti-adhesive activity was also studied. Microbial adhesion to solvents and contact angle measurements were performed to characterize bacteria and material surfaces. The results showed that surfactin was able to inhibit bacterial adhesion in all the conditions analyzed, giving a 63-66% adhesion reduction in the bacterial strains at 4°C. Rhamnolipid promoted a slight decrease in the attachment of S. aureus. The anti-adhesive activity of surfactin increased with the decrease in temperature, showing that this is an important parameter to be considered in surface conditioning tests. Surfactin showed good potential as an anti-adhesive compound that can be explored to protect surfaces from microbial contamination.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Adhesion/drug effects , Environmental Microbiology , Polystyrenes , Surface-Active Agents/metabolism , Glycolipids , Hydrophobic and Hydrophilic Interactions , Lipopeptides/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/physiology , Micrococcus luteus/drug effects , Micrococcus luteus/physiology , Peptides, Cyclic/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...