Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38964325

ABSTRACT

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.

2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38313282

ABSTRACT

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

3.
Biochem Biophys Res Commun ; 582: 100-104, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34700241

ABSTRACT

Aniridia is a panocular inherited rare eye disease linked to heterozygous mutations on the PAX6 gene, which fail to properly produce sufficient protein essential for normal eye development and function. Most of the patients suffer from aniridia-related keratopathy, a progressive opacification of the cornea. There is no effective treatment for this blinding disease. Here we screen for small compounds and identified Ritanserin, a serotonin 2A receptor antagonist, that can rescue PAX6 haploinsufficiency of mutant limbal cells, defective cell migration and PAX6-target gene expression. We further demonstrated that Ritanserin activates PAX6 production through the selective inactivation of the MEK/ERK signaling pathway. Our data strongly suggest that repurposing this therapeutic molecule could be effective in preventing or treating existing blindness by restoring corneal transparency.


Subject(s)
Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Ophthalmic Solutions/pharmacology , PAX6 Transcription Factor/genetics , Ritanserin/pharmacology , Serotonin Antagonists/pharmacology , Stem Cells/drug effects , Aniridia/drug therapy , Aniridia/genetics , Aniridia/metabolism , Aniridia/pathology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Repositioning/methods , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Gene Expression Regulation , HEK293 Cells , Haploinsufficiency , Humans , Limbus Corneae/drug effects , Limbus Corneae/metabolism , Limbus Corneae/pathology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , PAX6 Transcription Factor/agonists , PAX6 Transcription Factor/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/pathology
4.
Dev Cell ; 56(17): 2440-2454.e6, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34352223

ABSTRACT

Mitotic errors lead to aneuploidy, a condition of karyotype imbalance, frequently found in cancer cells. Alterations in chromosome copy number induce a wide variety of cellular stresses, including genome instability. Here, we show that cancer cells might exploit aneuploidy-induced genome instability and the resulting gene copy-number changes to survive under conditions of selective pressure, such as chemotherapy. Resistance to chemotherapeutic drugs was dictated by the acquisition of recurrent karyotypes, indicating that gene dosage might play a role in driving chemoresistance. Thus, our study establishes a causal link between aneuploidy-driven changes in gene copy number and chemoresistance and might explain why some chemotherapies fail to succeed.


Subject(s)
Aneuploidy , Chromosomal Instability/genetics , Drug Resistance/genetics , Drug Therapy , Gene Dosage/genetics , Drug Therapy/methods , Genomic Instability/genetics , Humans , Karyotype
5.
Nature ; 590(7846): 486-491, 2021 02.
Article in English | MEDLINE | ID: mdl-33505028

ABSTRACT

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Subject(s)
Aneuploidy , M Phase Cell Cycle Checkpoints/drug effects , Neoplasms/pathology , Abnormal Karyotype/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosome Segregation/drug effects , Diploidy , Genes, Lethal , Humans , Kinesins/deficiency , Kinesins/genetics , Kinesins/metabolism , Neoplasms/genetics , Spindle Apparatus/drug effects , Synthetic Lethal Mutations/drug effects , Synthetic Lethal Mutations/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...