Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Eur J Orthod ; 46(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38884540

ABSTRACT

AIM: The aim of the present study was to assess the alterations in morphology, roughness, and composition of the surfaces of a conventional and a flowable composite attachment engaged with aligners, and to evaluate the release of resin monomers and their derivatives in an aqueous environment. METHODS: Zirconia tooth-arch frames (n = 20) and corresponding thermoformed PET-G aligners with bonded attachments comprising two composite materials (universal-C and flowable-F) were fabricated. The morphological features (stereomicroscopy), roughness (optical profilometry), and surface composition (ATR-FTIR) of the attachments were examined before and after immersion in water. To simulate intraoral use, the aligners were removed and re-seated to the frames four times per day for a 7-day immersion period. After testing, the eluents were analyzed by LC-MS/MS targeting the compounds Bis-GMA, UDMA, 2-HEMA, TEGDMA and BPA and by LC-HRMS for suspect screening of the leached dental material compounds and their degradation products. RESULTS: After testing, abrasion-induced defects were found on attachment surfaces such as scratches, marginal cracks, loss of surface texturing, and fractures. The morphological changes and debonding rate were greater in F. Comparisons (before-after testing) revealed a significantly lower Sc roughness parameter in F. The surface composition of the aligners after testing showed minor changes from the control, with insignificant differences in the degree of C = C conversion, except for few cases with strong evidence of hydrolytic degradation. Targeted analysis results revealed a significant difference in the compounds released between Days 1 and 7 in both materials. Insignificant differences were found when C was compared with F in both timeframes. Several degradation products were detected on Day 7, with a strong reduction in the concentration of the targeted compounds. CONCLUSIONS: The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.


Subject(s)
Composite Resins , Materials Testing , Methacrylates , Surface Properties , Zirconium , Zirconium/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Dental Materials/chemistry , In Vitro Techniques , Humans , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Spectroscopy, Fourier Transform Infrared/methods
2.
Prog Orthod ; 25(1): 22, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825612

ABSTRACT

BACKGROUND: The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS: Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS: Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS: Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.


Subject(s)
Composite Resins , Methacrylates , Polyurethanes , Humans , Polyurethanes/chemistry , Composite Resins/chemistry , Female , Male , Methacrylates/chemistry , Saliva/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Adult , Orthodontic Appliances, Removable , Polyesters/chemistry , para-Aminobenzoates/analysis , Young Adult , Adolescent , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Tandem Mass Spectrometry , Chromatography, Liquid
3.
Redox Biol ; 72: 103144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613920

ABSTRACT

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Subject(s)
Graphite , Nitric Oxide , Graphite/chemistry , Nitric Oxide/metabolism , Humans , Nanostructures/chemistry , Porosity , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/administration & dosage , Cell Proliferation/drug effects , Cardiovascular Diseases/drug therapy , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
4.
Harmful Algae ; 133: 102585, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485435

ABSTRACT

Cyanobacteria can reach high densities in eutrophic lakes, which may cause problems due to their potential toxin production. Several methods are in use to prevent, control or mitigate harmful cyanobacterial blooms. Treatment of blooms with low concentrations of hydrogen peroxide (H2O2) is a promising emergency method. However, effects of H2O2 on cyanobacteria, eukaryotic phytoplankton and zooplankton have mainly been studied in controlled cultures and mesocosm experiments, while much less is known about the effectiveness and potential side effects of H2O2 treatments on entire lake ecosystems. In this study, we report on three different lakes in the Netherlands that were treated with average H2O2 concentrations ranging from 2 to 5 mg L-1 to suppress cyanobacterial blooms. Effects on phytoplankton and zooplankton communities, on cyanotoxin concentrations, and on nutrient availability in the lakes were assessed. After every H2O2 treatment, cyanobacteria drastically declined, sometimes by more than 99%, although blooms of Dolichospermum sp., Aphanizomenon sp., and Planktothrix rubescens were more strongly suppressed than a Planktothrix agardhii bloom. Eukaryotic phytoplankton were not significantly affected by the H2O2 additions and had an initial advantage over cyanobacteria after the treatment, when ample nutrients and light were available. In all three lakes, a new cyanobacterial bloom developed within several weeks after the first H2O2 treatment, and in two lakes a second H2O2 treatment was therefore applied to again suppress the cyanobacterial population. Rotifers strongly declined after most H2O2 treatments except when the H2O2 concentration was ≤ 2 mg L-1, whereas cladocerans were only mildly affected and copepods were least impacted by the added H2O2. In response to the treatments, the cyanotoxins microcystins and anabaenopeptins were released from the cells into the water column, but disappeared after a few days. We conclude that lake treatments with low concentrations of H2O2 can be a successful tool to suppress harmful cyanobacterial blooms, but may negatively affect some of the zooplankton taxa in lakes. We advise pre-tests prior to the treatment of lakes to define optimal treatment concentrations that kill the majority of the cyanobacteria and to minimize potential side effects on non-target organisms. In some cases, the pre-tests may discourage treatment of the lake.


Subject(s)
Cyanobacteria , Phytoplankton , Animals , Hydrogen Peroxide , Lakes/microbiology , Zooplankton , Ecosystem , Cyanobacteria/physiology
5.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38305148

ABSTRACT

Microbes are ubiquitous and provide numerous services to humans and our planet. However, a query arises as to whether these microbial services are valued by the general public especially after unprecedented conditions like the COVID-19 pandemic. In this context a survey was conducted to investigate the concept of microbe in Greece. Thematic analysis of 672 anonymous responses (age range 4-75yo) received for the open-ended prompt "What is the first thing that comes to mind when you hear the word microbe?" revealed five thematic categories: Negative emotions, Fuzzy associations, Biology, Entities and Health. Almost 80% of responses fell under "Biology" and "Health" and the general pattern of answers was the same across all age groups. Microbes took a variety of forms in the minds of respondents, however, the concept of "microbe" seems to be more unshaped at younger ages (4-11yo), as revealed in children's language choices. Overall, the often-negative perception of microorganisms seems to be confirmed in this study. Although this research was limited to participants from Greece, it remains relevant to other countries around the world as well. We discuss the reasons behind this negative perception and offer suggestions for reversing it.


Subject(s)
COVID-19 , Literacy , Child , Humans , Child, Preschool , Adolescent , Young Adult , Adult , Middle Aged , Aged , Greece , Pandemics , COVID-19/epidemiology
6.
Sci Total Environ ; 892: 164725, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37290649

ABSTRACT

Harmful algal blooms events have been reported worldwide and during the last decades are occurred with increasing frequency and intensity due to the climate change and the high inputs of nutrients in freshwaters from anthropogenic activities. During blooms cyanobacteria release in water their toxic secondary metabolites, known as cyanotoxins, along with other bioactive metabolites. Due to the negative impacts of these compounds on aquatic ecosystems and public health, there is an urgent need to detect and identify known and unknown cyanobacterial metabolites in surface waters. In the frame of the present study, a method based on liquid chromatography - high resolution mass spectrometry (LC-HRMS) was developed to investigate the presence of cyanometabolites in bloom samples from Lake Karaoun, Lebanon. Data analysis was performed using Compound Discoverer software with related tools and databases in combination to the CyanoMetDB mass list for detection, identification and structural elucidation of the cyanobacterial metabolites. In the course of this study, 92 cyanometabolites were annotated including 51 cyanotoxins belonging to microcystins, 15 microginins, 10 aeruginosins, 6 cyclamides, 5 anabaenopeptins, a cyanopeptolin, the dipeptides radiosumin B and dehydroradiosumin, the planktoncyclin and a mycosporine-like amino acid. Out of them, 7 new cyanobacterial metabolites, the chlorinated MC-ClYR, [epoxyAdda5]MC-YR, MC-LI, aeruginosin 638, aeruginosin 588, microginin 755C and microginin 727 were discovered. Moreover, the presence of anthropogenic contaminants was recorded indicating the pollution of the lake and emphasizing the need for assessment of the co-occurrence of cyanotoxins, other cyanobacterial metabolites and other compounds hazardous to the environment. Overall, results prove the suitability of the proposed approach for the detection of cyanobacterial metabolites in environmental samples but also highlight the necessity of spectral libraries for these compounds, considering the absence of their reference standards.


Subject(s)
Cyanobacteria , Lakes , Lakes/analysis , Ecosystem , Cyanobacteria/metabolism , Microcystins/analysis , Chromatography, Liquid/methods , Mass Spectrometry , Cyanobacteria Toxins
7.
Sci Total Environ ; 892: 164218, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37211132

ABSTRACT

In the present study, the photocatalytic performance of exfoliated graphitic carbon nitride (g-C3N4) catalysts, with enhanced properties and response in UV and visible light irradiation, was evaluated for the removal of selected contaminants i.e., diuron, bisphenol A and ethyl paraben. Commercial TiO2 Degussa P25 was also used as a reference photocatalyst. The g-C3N4 catalysts demonstrated good photocatalytic activity which in some cases is comparable to TiO2 Degussa P25 leading to high removal percentages of the studied micropollutants under UV-A light irradiation. In contrast to TiO2 Degussa P25, g-C3N4 catalysts were also able to degrade the studied micropollutants under visible light irradiation. For all the studied g-C3N4 catalysts under both UV-A and visible light irradiation, the overall degradation rate decreases in the order of bisphenol A > diuron > ethyl paraben. Among the studied g-C3N4, the chemically exfoliated catalyst (g-C3N4-CHEM) showed superior photocatalytic activity under UV-A light irradiation due to its enhanced characteristics, such as pore volume and specific surface area and ~ 82.0 % in 6 min, ~75.7 % in 15 min and ~ 96.3 % in 40 min removals were achieved for BPA, DIU and EP, respectively. Under visible light irradiation, the thermally exfoliated catalyst (g-C3N4-THERM) demonstrated the best photocatalytic performance and the degradation ranged from ~29.5 to 59.4 % after 120 min. EPR data revealed that the three g-C3N4 semiconductors generate mainly O2•-, whereas TiO2 Degussa P25 generates both HO• and O2•-, the latter only under UV-A light irradiation. Nevertheless, the indirect formation of HO• in the case of g-C3N4 should also be considered. Hydroxylation, oxidation, dealkylation, dechlorination and ring opening were the main degradation pathways. The process proceeded without significant alterations in toxicity levels. Based on the results, heterogeneous photocatalysis using g-C3N4 catalysts is a promising method for the removal of organic micropollutants without the formation of harmful transformation products.


Subject(s)
Diuron , Light
8.
J Cardiovasc Magn Reson ; 25(1): 6, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36740688

ABSTRACT

BACKGROUND: Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP). METHODS AND RESULTS: Single transgenic Creatine Transporter overexpressing (CrT-OE, n = 7) and dTg mice (CrT-OE and CK, n = 6) mice were anaesthetised with isoflurane to acquire 31P-CMRS measurements of the left ventricle (LV) utilising a two-dimensional (2D), threefold under-sampled density-weighted chemical shift imaging (2D-CSI) sequence, which provided high-resolution data with nominal voxel size of 8.5 µl within 70 min. (1H-) cine-CMR data for cardiac function assessment were obtained in the same imaging session. Under a separate examination, mice received invasive haemodynamic assessment, after which tissue was collected for biochemical analysis. Myocardial creatine levels were elevated in all mouse hearts, but only dTg exhibited significantly elevated CK activity, resulting in a 51% higher PCr/ATP ratio in heart (3.01 ± 0.96 vs. 2.04 ± 0.57-mean ± SD; dTg vs. CrT-OE), that was absent from adjacent skeletal muscle. No significant differences were observed for any parameters of LV structure and function, confirming that augmentation of CK activity does not have unforeseen consequences for the heart. CONCLUSIONS: We have developed an improved 31P-CMRS methodology for the in vivo assessment of energetics in the murine heart which enabled high-resolution imaging within acceptable scan times. Mice over-expressing both creatine and CK in the heart exhibited a synergistic elevation in PCr/ATP that can now be tested for therapeutic potential in models of chronic heart failure.


Subject(s)
Creatine Kinase , Creatine , Mice , Animals , Creatine Kinase/metabolism , Creatine/metabolism , Energy Metabolism/physiology , Predictive Value of Tests , Myocardium/pathology , Phosphocreatine/metabolism , Adenosine Triphosphate/metabolism , Mice, Transgenic
9.
Chemosphere ; 311(Pt 2): 137012, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36397634

ABSTRACT

Cyanobacteria produce a plethora of structurally diverse bioactive secondary metabolites, including cyanotoxins which pose a serious threat to humans and other living organisms worldwide. Currently, a wide variety of mass spectrometry-based methods for determination of microcystins (MCs), the most commonly occurring and studied class of cyanotoxins, have been developed and employed for research and monitoring purposes. The scarcity of commercially available reference materials, together with the ever-growing range of mass spectrometers and analytical approaches, make the accuracy of quantitative analyses a critical point to be carefully investigated in view of a reliable risk evaluation. This study reports, a comparative investigation of the qualitative and quantitative MCs profile obtained using targeted and untargeted liquid chromatography-mass spectrometry approaches for the analyses of cyanobacterial biomass from Lake Kastoria, Greece. Comparison of the total MCs content measured by the two approaches showed good correlation, with variations in the range of 3.8-13.2%. In addition, the implementation of an analytical workflow on a hybrid linear ion trap/orbitrap mass spectrometer is described, based on combining data-dependent acquisition and a powerful database of cyanobacterial metabolites (CyanoMetDB) for the annotation of known and discovery of new cyanopeptides. This untargeted strategy proved highly effective for the identification of MCs, microginins, anabaenopeptins, and micropeptins. The systematic interpretation of the acquired fragmentation patterns allowed the elucidation of two new MC structural variants, MC-PrhcysR and MC-Prhcys(O)R, and proposal of structures for two new microginins, isomeric cyanostatin B and MG 821A, and three isomeric micropeptins at m/z 846.4715, 846.4711 and 846.4723.


Subject(s)
Cyanobacteria , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Workflow , Cyanobacteria/metabolism , Microcystins/chemistry , Oligopeptides/metabolism
10.
ESC Heart Fail ; 10(1): 189-199, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36178450

ABSTRACT

AIMS: Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT-/- mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure. METHODS AND RESULTS: Study 1: homoarginine deficiency-female AGAT-/- and wild-type mice were given creatine-supplemented diet so that both had normal myocardial creatine levels, but only AGAT-/- had low plasma homoarginine. Myocardial infarction (MI) was surgically induced and left ventricular (LV) structure and function assessed at 6-7 weeks by in vivo imaging and haemodynamics. Study 2: homoarginine and creatine-deficiency-as before, but AGAT-/- mice were given creatine-supplemented diet until 1 week post-MI, when 50% were changed to a creatine-free diet. Both groups therefore had low homoarginine levels, but one group also developed lower myocardial creatine levels. In both studies, all groups had LV remodelling and dysfunction commensurate with the development of chronic heart failure, for example, LV dilatation and mean ejection fraction <20%. However, neither homoarginine deficiency alone or in combination with creatine deficiency had a significant effect on mortality, LV remodelling, or on any indices of contractile and lusitropic function. CONCLUSIONS: Low levels of homoarginine and creatine do not worsen chronic heart failure arguing against a major causative role in disease progression. This suggests that it is unnecessary to correct hArg deficiency in patients with heart failure, although supra-physiological levels may still be beneficial.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Female , Mice , Animals , Homoarginine , Arginine , Myocardium , Creatine
11.
Eur J Orthod ; 45(3): 244-249, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36130120

ABSTRACT

AIM: To quantitatively assess the degree of conversion and the water-leaching targeted compound from 3D-printed aligners. MATERIALS AND METHODS: 3D-printed aligners were made of photopolymerized resin (Tera Harz TC85A). The molecular structure and degree of conversion of the set resin were investigated by ATR-FTIR spectroscopy (n = 5). The aligners (n = 10) were immersed in double distilled water for 1 week at 37°C and the eluents were analysed using liquid chromatography/mass spectrometry methods (LC-ESI-MS/MS for urethane dimethacrylate [UDMA] and LC-APCI-MS/MS for bispenol-A [BPA]). RESULTS: The resin was composed of aliphatic vinyl ester-urethane monomers, with acrylate and/or methacrylate functionalization. The degree of conversion was estimated as to 83%. There was no detection of BPA in any of the assessed samples (0.25 µg/l). Quantifiable amounts of UDMA were detected in all the exposed samples, ranging from 29 to 96 µg/l. CONCLUSIONS: Although efficiently polymerized and BPA free, the great variability in the amount of UDMA monomer leached from the examined samples may raise concerns on potential health hazards after repeated intraoral exposure, which is indicated for this class of materials.


Subject(s)
Composite Resins , Polymethacrylic Acids , Humans , Composite Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Polymethacrylic Acids/chemistry , Tandem Mass Spectrometry , Polyethylene Glycols/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Printing, Three-Dimensional , Materials Testing
12.
Front Nutr ; 9: 969702, 2022.
Article in English | MEDLINE | ID: mdl-36017222

ABSTRACT

Organisms obtain creatine from their diet or by de novo synthesis via AGAT (L-arginine:glycine amidinotransferase) and GAMT (Guanidinoacetate N-methyltrasferase) in kidney and liver, respectively. AGAT also synthesizes homoarginine (hArg), low levels of which predict poor outcomes in human cardiovascular disease, while supplementation maintains contractility in murine heart failure. However, the expression pattern of AGAT has not been systematically studied in mouse tissues and nothing is known about potential feedback interactions between creatine and hArg. Herein, we show that C57BL/6J mice express AGAT and GAMT in kidney and liver respectively, whereas pancreas was the only organ to express appreciable levels of both enzymes, but no detectable transmembrane creatine transporter (Slc6A8). In contrast, kidney, left ventricle (LV), skeletal muscle and brown adipose tissue must rely on creatine transporter for uptake, since biosynthetic enzymes are not expressed. The effects of creatine and hArg supplementation were then tested in wild-type and AGAT knockout mice. Homoarginine did not alter creatine accumulation in plasma, LV or kidney, whereas in pancreas from AGAT KO, the addition of hArg resulted in higher levels of tissue creatine than creatine-supplementation alone (P < 0.05). AGAT protein expression in kidney was downregulated by creatine supplementation (P < 0.05), consistent with previous reports of end-product repression. For the first time, we show that hArg supplementation causes a similar down-regulation of AGAT protein (P < 0.05). These effects on AGAT were absent in the pancreas, suggesting organ specific mechanisms of regulation. These findings highlight the potential for interactions between creatine and hArg that may have implications for the use of dietary supplements and other therapeutic interventions.

13.
Aquat Toxicol ; 243: 106074, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35030472

ABSTRACT

In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.


Subject(s)
Microcystis , Water Pollutants, Chemical , Animals , Ecosystem , Embryonic Development , Microcystins , Swimming , Water Pollutants, Chemical/toxicity , Zebrafish
14.
Toxins (Basel) ; 13(10)2021 10 10.
Article in English | MEDLINE | ID: mdl-34679009

ABSTRACT

Lake Karaoun is the largest artificial lake in Lebanon and serves multiple purposes. Recently, intensive cyanobacterial blooms have been reported in the lake, raising safety and aesthetic concerns related to the presence of cyanotoxins and cyanobacterial taste and odor (T&O) compounds, respectively. Here, we communicate for the first time results from a recent investigation by LC-MS/MS covering multiple cyanotoxins (microcystins (MCs), anatoxin-a, cylindrospermopsin, nodularin) in water and fish collected between 2019 and 2020. Eleven MCs were identified reaching concentrations of 211 and 199 µg/L for MC-LR and MC-YR, respectively. Cylindrospermopsin, anatoxin-a and nodularin were not detected. The determination of the total MCs was also carried out by ELISA and Protein Phosphatase Inhibition Assay yielding comparable results. Molecular detection of cyanobacteria (16S rRNA) and biosynthetic genes of toxins were carried out by qPCR. Untargeted screening analysis by GC-MS showed the presence of T&O compounds, such as ß-cyclocitral, ß-ionone, nonanal and dimethylsulfides that contribute to unpleasant odors in water. The determination of volatile organic compounds (VOCs) showed the presence of anthropogenic pollutants, mostly dichloromethane and toluene. The findings are important to develop future monitoring schemes in order to assess the risks from cyanobacterial blooms with regard to the lake's ecosystem and its uses.


Subject(s)
Cyanobacteria Toxins/analysis , Lakes/chemistry , Water Pollutants, Chemical/analysis , Animals , Carps , Cyanobacteria/chemistry , Cyanobacteria/genetics , Cyanobacteria Toxins/genetics , Environmental Monitoring/methods , Eutrophication , Fresh Water/chemistry , Lakes/microbiology , Lebanon , Odorants , RNA, Ribosomal, 16S , Taste , Volatile Organic Compounds/analysis
15.
Toxins (Basel) ; 13(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34205997

ABSTRACT

Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This study reports on the co-occurrence of CTs and cyanopeptides (CPs) in Lake Vegoritis, Greece and presents their variant-specific profiles obtained during 3-years of monitoring (2018-2020). Fifteen CTs (cylindrospermopsin (CYN), anatoxin (ATX), nodularin (NOD), and 12 microcystins (MCs)) and ten CPs (3 APs, 4 MGs, 2 AERs and aeruginosamide (AEG A)) were targeted using an extended and validated LC-MS/MS protocol for the simultaneous determination of multi-class CTs and CPs. Results showed the presence of MCs (MC-LR, MC-RR, MC-YR, dmMC-LR, dmMC-RR, MC-HtyR, and MC-HilR) and CYN at concentrations of <1 µg/L, with MC-LR (79%) and CYN (71%) being the most frequently occurring. Anabaenopeptins B (AP B) and F (AP F) were detected in almost all samples and microginin T1 (MG T1) was the most abundant CP, reaching 47.0 µg/L. This is the first report of the co-occurrence of CTs and CPs in Lake Vegoritis, which is used for irrigation, fishing and recreational activities. The findings support the need for further investigations of the occurrence of CTs and the less studied cyanobacterial metabolites in lakes, to promote risk assessment with relevance to human exposure.


Subject(s)
Bacterial Toxins/analysis , Cyanobacteria , Peptides/analysis , Water Pollutants/analysis , Chlorophyll A/analysis , Environmental Monitoring , Greece , Lakes/analysis , Lakes/microbiology
16.
PeerJ ; 9: e11270, 2021.
Article in English | MEDLINE | ID: mdl-34141463

ABSTRACT

The Convention on Biological Diversity (CBD) pathways classification framework used in the implementation of the European Union's (EU) Regulation 1143/2014 on invasive alien species (IAS Regulation) has recently been adopted by the European Alien Species Information Network (EASIN), the official information system supporting the implementation of the IAS Regulation. In the current paper, the result of an alignment of the primary introduction pathways of all alien plants in Europe included in the EASIN catalogue is presented, based on the CBD framework. In total, 6,250 alien plant taxa (marine plants excluded), both alien to Europe (native range outside Europe) and alien in Europe (native range partially in Europe) are reported. Altogether 5,175 plant taxa had their primary introduction pathway aligned based on the CBD framework, while for the rest the pathway remains unknown. In addition, the taxonomy, year and country of its first record in the wild are provided for each taxon. Our analyses reveal that the main primary introduction pathways of alien plants into Europe are linked to accidental escapes from ornamental and horticultural activities. Northwestern European countries seem to act as the main gateway areas of alien plants into Europe. Recent first observations of new alien taxa growing spontaneously exhibit a contemporary accelerating trend for plants alien to Europe, particularly linked to ornamental and horticultural activities. On the other hand, the number of new plants alien in Europe seems to have stabilized over the last few decades. The present work can assist in the prioritization of introduction pathways control, with the target of slowing down the rate of alien plants introductions into Europe, following also the requirements of the IAS Regulation.

17.
Front Physiol ; 12: 623969, 2021.
Article in English | MEDLINE | ID: mdl-33867998

ABSTRACT

AIMS: Adenylate kinase 1 (AK1) catalyses the reaction 2ADP ↔ ATP + AMP, extracting extra energy under metabolic stress and promoting energetic homeostasis. We hypothesised that increased AK1 activity would have negligible effects at rest, but protect against ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS: Cardiac-specific AK1 overexpressing mice (AK1-OE) had 31% higher AK1 activity (P = 0.009), with unchanged total creatine kinase and citrate synthase activities. Male AK1-OE exhibited mild in vivo dysfunction at baseline with lower LV pressure, impaired relaxation, and contractile reserve. LV weight was 19% higher in AK1-OE males due to higher tissue water content in the absence of hypertrophy or fibrosis. AK1-OE hearts had significantly raised creatine, unaltered total adenine nucleotides, and 20% higher AMP levels (P = 0.05), but AMP-activated protein kinase was not activated (P = 0.85). 1H-NMR revealed significant differences in LV metabolite levels compared to wild-type, with aspartate, tyrosine, sphingomyelin, cholesterol all elevated, whereas taurine and triglycerides were significantly lower. Ex vivo global no-flow I/R, caused four-of-seven AK1-OE hearts to develop terminal arrhythmia (cf. zero WT), yet surviving AK1-OE hearts had improved functional recovery. However, AK1-OE did not influence infarct size in vivo and arrhythmias were only observed ex vivo, probably as an artefact of adenine nucleotide loss during cannulation. CONCLUSION: Modest elevation of AK1 may improve functional recovery following I/R, but has unexpected impact on LV weight, function and metabolite levels under basal resting conditions, suggesting a more nuanced role for AK1 underpinning myocardial energy homeostasis and not just as a response to stress.

18.
Toxins (Basel) ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: mdl-35050981

ABSTRACT

Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.


Subject(s)
Bacterial Toxins/isolation & purification , Cyanobacteria/chemistry , Fresh Water/microbiology , Peptides, Cyclic/isolation & purification , Greece , Microcystis/chemistry
19.
Data Brief ; 31: 105825, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32671141

ABSTRACT

Microginins are the less common class of bioactive linear cyanobacterial peptides. Recently, an investigation for their presence in cyanobacteria from Greek freshwaters and strain cultures was carried out. The present dataset is related to the research article "New microginins from cyanobacteria of Greek freshwaters" [1]. Cyanobacterial biomass from bloom samples and cultured strains were extracted with aqueous methanol. Extracts were analysed by liquid chromatography coupled to hybrid triple quadrupole/linear ion trap mass spectrometer (LC-qTRAP MS/MS) in information dependent acquisition (IDA) mode. Enhanced ion product (EIP) mode was applied for the collection of ion fragmentation spectra. Identification of microginins was based on the characteristic fragment ions of the unique microginin amino acid 3-amino-2-hydroxy-decanoic acid (Ahda) and its modified forms. The analysis of fragmentation spectra revealed 51 microginin structures, including 36 new variants. This article provides the dataset of fragmentation mass spectra of the microginins detected in cyanobacteria from Greek freshwaters. As this class of cyanopeptides is produced by cyanobacteria from different geographical regions, the aim of this dataset is to enable the identification of microginins in future studies and therefore to contribute to a better evaluation of their presence in freshwater bodies worldwide.

20.
Chemosphere ; 248: 125961, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32059332

ABSTRACT

Cyanobacteria can form extensive blooms in water with concurrent production and release of a large number of chemically diverse and bioactive metabolites, including hazardous toxins. Significant number of the metabolites belongs to non-ribosomal peptides, with unique residues, unusual structures and great potential for biotechnological application. The biosynthetic pathways of the peptides generate tens of variants, but only part of them has been identified. Microginins are an understudied class of cyanobacterial linear peptides with a characteristic decanoic acid derivative amino acid residue in their structure. In this study, cyanobacterial blooms and isolated strains from Greek lakes were analyzed for the presence of microginins by liquid chromatography coupled to hybrid triple quadrupole/linear ion trap mass spectrometer (LC-qTRAP MS/MS). Microginin structures were elucidated based on the obtained fragmentation spectra. A large number of microginins occurred in blooms of Greek freshwaters and the most frequently detected were Microginin FR1 (70% of samples), Microginin T1 (52%), Microginin 565B (52%), Microginin T2 (43%), and Microginin 565A (43%). Additionally, nine cyanobacterial strains i.e. Nostoc oryzae, Synechococcus sp., Microcystis aeruginosa, Microcystis viridis, and five Microcystis sp., were found to produce microginins. Thirty-six new microginin structures were characterized out of fifty-one totally detected variants. This is the first time that such a diversity of microginins is reported to be present in water bodies. Results clearly demonstrate the great metabolomic potential of cyanobacteria that inhabit Greek freshwaters and significantly expand the knowledge of cyanobacterial secondary metabolites with regards to the class of microginins.


Subject(s)
Cyanobacteria/metabolism , Water Pollution , Chromatography, Liquid , Environmental Monitoring , Greece , Lakes/analysis , Metabolomics , Microcystis/metabolism , Peptides , Tandem Mass Spectrometry , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL