Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Radiology ; 309(1): e231007, 2023 10.
Article in English | MEDLINE | ID: mdl-37874242

ABSTRACT

Background A better understanding of the association between liver MRI proton density fat fraction (PDFF) and liver diseases might support the clinical implementation of MRI PDFF. Purpose To quantify the genetically predicted causal effect of liver MRI PDFF on liver disease risk. Materials and Methods This population-based prospective observational study used summary-level data mainly from the UK Biobank and FinnGen. Mendelian randomization analysis was conducted using the inverse variance-weighted method to explore the causal association between genetically predicted liver MRI PDFF and liver disease risk with Bonferroni correction. The individual-level data were downloaded between August and December 2020 from the UK Biobank. Logistic regression analysis was performed to validate the association between liver MRI PDFF polygenic risk score and liver disease risk. Mediation analyses were performed using multivariable mendelian randomization. Results Summary-level and individual-level data were obtained from 32 858 participants and 378 436 participants (mean age, 57 years ± 8 [SD]; 203 108 female participants), respectively. Genetically predicted high liver MRI PDFF was associated with increased risks of malignant liver neoplasm (odds ratio [OR], 4.5; P < .001), alcoholic liver disease (OR, 1.9; P < .001), fibrosis and cirrhosis of the liver (OR, 3.0; P < .004), fibrosis of the liver (OR, 3.6; P = .002), cirrhosis of the liver (OR, 3.8; P < .001), nonalcoholic steatohepatitis (OR, 7.7; P < .001), and nonalcoholic fatty liver disease (NAFLD) (OR, 4.4; P < .001). Individual-level evidence supported these associations after grouping participants based on liver MRI PDFF polygenic risk score (all P < .004). The mediation analysis indicated that genetically predicted high-density lipoprotein cholesterol, type 2 diabetes mellitus, and waist-to-hip ratio (mediation effects, 25.1%-46.3%) were related to the occurrence of fibrosis and cirrhosis of the liver, cirrhosis of the liver, and NAFLD at liver MRI PDFF (all P < .05). Conclusion This study provided evidence of the association between genetically predicted liver MRI PDFF and liver health. © RSNA, 2023 Supplemental material is available for this article. See also the editorials by Reeder and Starekova and Monsell in this issue.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Female , Humans , Middle Aged , Diabetes Mellitus, Type 2/pathology , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/pathology , Magnetic Resonance Imaging/methods , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Male
3.
Eur Radiol ; 33(12): 8965-8973, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37452878

ABSTRACT

OBJECTIVES: To develop and validate a machine learning model based on contrast-enhanced CT to predict the risk of occurrence of the composite clinical endpoint (hospital-based intervention or death) in cirrhotic patients with acute variceal bleeding (AVB). METHODS: This retrospective study enrolled 330 cirrhotic patients with AVB between January 2017 and December 2020 from three clinical centers. Contrast-enhanced CT and clinical data were collected. Centers A and B were divided 7:3 into a training set and an internal test set, and center C served as a separate external test set. A well-trained deep learning model was applied to segment the liver and spleen. Then, we extracted 106 original features of the liver and spleen separately based on the Image Biomarker Standardization Initiative (IBSI). We constructed the Liver-Spleen (LS) model based on the selected radiomics features. The performance of LS model was evaluated by receiver operating characteristics and calibration curves. The clinical utility of models was analyzed using decision curve analyses (DCA). RESULTS: The LS model demonstrated the best diagnostic performance in predicting the composite clinical endpoint of AVB in patients with cirrhosis, with an AUC of 0.782 (95% CI 0.650-0.882) and 0.789 (95% CI 0.674-0.878) in the internal test and external test groups, respectively. Calibration curves and DCA indicated the LS model had better performance than traditional clinical scores. CONCLUSION: A novel machine learning model outperforms previously known clinical risk scores in assessing the prognosis of cirrhotic patients with AVB CLINICAL RELEVANCE STATEMENT: The Liver-Spleen model based on contrast-enhanced CT has proven to be a promising tool to predict the prognosis of cirrhotic patients with acute variceal bleeding, which can facilitate decision-making and personalized therapy in clinical practice. KEY POINTS: • The Liver-Spleen machine learning model (LS model) showed good performance in assessing the clinical composite endpoint of cirrhotic patients with AVB (AUC ≥ 0.782, sensitivity ≥ 80%). • The LS model outperformed the clinical scores (AUC ≤ 0.730, sensitivity ≤ 70%) in both internal and external test cohorts.


Subject(s)
Esophageal and Gastric Varices , Humans , Esophageal and Gastric Varices/diagnostic imaging , Retrospective Studies , Gastrointestinal Hemorrhage/therapy , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Risk Factors , Prognosis , Machine Learning
4.
Radiology ; 307(4): e222729, 2023 05.
Article in English | MEDLINE | ID: mdl-37097141

ABSTRACT

Background Prediction of microvascular invasion (MVI) may help determine treatment strategies for hepatocellular carcinoma (HCC). Purpose To develop a radiomics approach for predicting MVI status based on preoperative multiphase CT images and to identify MVI-associated differentially expressed genes. Materials and Methods Patients with pathologically proven HCC from May 2012 to September 2020 were retrospectively included from four medical centers. Radiomics features were extracted from tumors and peritumor regions on preoperative registration or subtraction CT images. In the training set, these features were used to build five radiomics models via logistic regression after feature reduction. The models were tested using internal and external test sets against a pathologic reference standard to calculate area under the receiver operating characteristic curve (AUC). The optimal AUC radiomics model and clinical-radiologic characteristics were combined to build the hybrid model. The log-rank test was used in the outcome cohort (Kunming center) to analyze early recurrence-free survival and overall survival based on high versus low model-derived score. RNA sequencing data from The Cancer Image Archive were used for gene expression analysis. Results A total of 773 patients (median age, 59 years; IQR, 49-64 years; 633 men) were divided into the training set (n = 334), internal test set (n = 142), external test set (n = 141), outcome cohort (n = 121), and RNA sequencing analysis set (n = 35). The AUCs from the radiomics and hybrid models, respectively, were 0.76 and 0.86 for the internal test set and 0.72 and 0.84 for the external test set. Early recurrence-free survival (P < .01) and overall survival (P < .007) can be categorized using the hybrid model. Differentially expressed genes in patients with findings positive for MVI were involved in glucose metabolism. Conclusion The hybrid model showed the best performance in prediction of MVI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Summers in this issue.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Retrospective Studies , Neoplasm Invasiveness/pathology , Tomography, X-Ray Computed/methods
5.
Front Oncol ; 10: 470, 2020.
Article in English | MEDLINE | ID: mdl-32373512

ABSTRACT

Purpose: To compare the efficacy and safety of computed tomography (CT)-guided 125I seed implantation with second-line chemotherapy in treatment of oligorecurrence non-small cell lung cancer after failure of first-line chemotherapy. Methods: Data of oligorecurrence non-small cell lung cancer patients after failure of first-line chemotherapy at two institutions were retrospectively reviewed from January 2013 to July 2018. A total of 53 patients who received the treatment of 125I seed implantation or second-line chemotherapy were eligible for this study. In group A, 25 patients, 84 lesions, received CT-guided permanent 125I seed implantation, whereas in group B, 28 patients, 96 lesions, received second-line chemotherapy. The outcomes were measured in terms of disease control rate, overall survival, quality of life, and complications. Results: The median follow-up period was 13 months (range, 5-42 months). Disease control rate in group A was higher than that in group B (70.8 vs. 42.3%, P = 0.042) at 6 months after treatment. The median overall survival was 12.8 months (95% confidence interval, 10.5-15.1 months) in group A and 15.2 months (95% confidence interval, 12.2-18.2 months) in group B, with no significant difference (P = 0.847). Since the fourth month, the number of patients in group A with a non-decreasing Karnofsky Performance Scale score was more than that in group B (P < 0.05). The incidence of grade 3 or higher complications especially hematologic toxicity in group A was significantly lower than that in group B (P < 0.05). Conclusion: Radioactive 125I seed implantation is safe and feasible in selected non-small cell lung cancer patients with oligorecurrence after failure of first-line chemotherapy and seems to provide a better long-term quality of life in these patients compared with second-line chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL