Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Industr Inform ; 17(9): 6528-6538, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37981911

ABSTRACT

Automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images can help to establish a quantitative model for diagnosis and treatment. For this reason, this article provides a new segmentation method to meet the needs of CT images processing under COVID-19 epidemic. The main steps are as follows: First, the proposed region of interest extraction implements patch mechanism strategy to satisfy the applicability of 3-D network and remove irrelevant background. Second, 3-D network is established to extract spatial features, where 3-D attention model promotes network to enhance target area. Then, to improve the convergence of network, a combination loss function is introduced to lead gradient optimization and training direction. Finally, data augmentation and conditional random field are applied to realize data resampling and binary segmentation. This method was assessed with some comparative experiment. By comparison, the proposed method reached the highest performance. Therefore, it has potential clinical applications.

2.
Biomed Res Int ; 2020: 9347215, 2020.
Article in English | MEDLINE | ID: mdl-33015187

ABSTRACT

Cerebrovascular rupture can cause a severe stroke. Three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is a common method of obtaining vascular information. This work proposes a fully automated segmentation method for extracting the vascular anatomy from TOF-MRA. The steps of the method are as follows. First, the brain is extracted on the basis of regional growth and path planning. Next, the brain's highlighted connected area is explored to obtain seed point information, and the Hessian matrix is used to enhance the contrast of image. Finally, a random walker combined with seed points and enhanced images is used to complete vascular anatomy segmentation. The method is tested using 12 sets of data and compared with two traditional vascular segmentation methods. Results show that the described method obtains an average Dice coefficient of 90.68%, and better results were obtained in comparison with the traditional methods.


Subject(s)
Algorithms , Brain/anatomy & histology , Brain/blood supply , Image Processing, Computer-Assisted , Magnetic Resonance Angiography , Brain/diagnostic imaging , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL