Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
mSystems ; 8(4): e0025923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37498086

ABSTRACT

Regular high-intensity exercise can cause changes in athletes' gut microbiota, and the extent and nature of these changes may be affected by the athletes' exercise patterns. However, it is still unclear to what extent different types of athletes have distinct gut microbiome profiles and whether we can effectively monitor an athlete's inflammatory risk based on their microbiota. To address these questions, we conducted a multi-cohort study of 543 fecal samples from athletes in three different sports: aerobics (n = 316), wrestling (n = 53), and rowing (n = 174). We sought to investigate how athletes' gut microbiota was specialized for different types of sports, and its associations with inflammation, diet, anthropometrics, and anaerobic measurements. We established a microbiota catalog of multi-cohort athletes and found that athletes have specialized gut microbiota specific to the type of sport they engaged in. Using latent Dirichlet allocation, we identified 10 microbial subgroups of athletes' gut microbiota, each of which had specific correlations with inflammation, diet, and anaerobic performance in different types of athletes. Notably, most inflammation indicators were associated with Prevotella-driven subgroup 7. Finally, we found that the effects of sport types and exercise intensity on the gut microbiota were sex-dependent. These findings shed light on the complex associations between physical factors, gut microbiota, and inflammation in athletes of different sports types and could have significant implications for monitoring potential inflammation risk and developing personalized exercise programs. IMPORTANCE This study is the first multi-cohort investigation of athletes across a range of sports, including aerobics, wrestling, and rowing, with the goal of establishing a multi-sport microbiota catalog. Our findings highlight that athletes' gut microbiota is sport-specific, indicating that exercise patterns may play a significant role in shaping the microbiome. Additionally, we observed distinct associations between gut microbiota and markers of inflammation, diet, and anaerobic performance in athletes of different sports. Moreover, we expanded our analysis to include a non-athlete cohort and found that exercise intensity had varying effects on the gut microbiota of participants, depending on sex.


Subject(s)
Gastrointestinal Microbiome , Sports , Humans , Cohort Studies , Athletes , Inflammation/epidemiology
2.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37141141

ABSTRACT

Microbiome-based diagnosis of cancer is an increasingly important supplement for the genomics approach in cancer diagnosis, yet current models for microbiome-based diagnosis of cancer face difficulties in generality: not only diagnosis models could not be adapted from one cancer to another, but models built based on microbes from tissues could not be adapted for diagnosis based on microbes from blood. Therefore, a microbiome-based model suitable for a broad spectrum of cancer types is urgently needed. Here we have introduced DeepMicroCancer, a diagnosis model using artificial intelligence techniques for a broad spectrum of cancer types. Built based on the random forest models it has enabled superior performances on more than twenty types of cancers' tissue samples. And by using the transfer learning techniques, improved accuracies could be obtained, especially for cancer types with only a few samples, which could satisfy the requirement in clinical scenarios. Moreover, transfer learning techniques have enabled high diagnosis accuracy that could also be achieved for blood samples. These results indicated that certain sets of microbes could, if excavated using advanced artificial techniques, reveal the intricate differences among cancers and healthy individuals. Collectively, DeepMicroCancer has provided a new venue for accurate diagnosis of cancer based on tissue and blood materials, which could potentially be used in clinics.


Subject(s)
Body Fluids , Microbiota , Neoplasms , Humans , Artificial Intelligence , Neoplasms/diagnosis , Genomics
4.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36631408

ABSTRACT

The gut microbial communities are highly plastic throughout life, and the human gut microbial communities show spatial-temporal dynamic patterns at different life stages. However, the underlying association between gut microbial communities and time-related factors remains unclear. The lack of context-awareness, insufficient data, and the existence of batch effect are the three major issues, making the life trajection of the host based on gut microbial communities problematic. Here, we used a novel computational approach (microDELTA, microbial-based deep life trajectory) to track longitudinal human gut microbial communities' alterations, which employs transfer learning for context-aware mining of gut microbial community dynamics at different life stages. Using an infant cohort, we demonstrated that microDELTA outperformed Neural Network for accurately predicting the age of infant with different delivery mode, especially for newborn infants of vaginal delivery with the area under the receiver operating characteristic curve of microDELTA and Neural Network at 0.811 and 0.436, respectively. In this context, we have discovered the influence of delivery mode on infant gut microbial communities. Along the human lifespan, we also applied microDELTA to a Chinese traveler cohort, a Hadza hunter-gatherer cohort and an elderly cohort. Results revealed the association between long-term dietary shifts during travel and adult gut microbial communities, the seasonal cycling of gut microbial communities for the Hadza hunter-gatherers, and the distinctive microbial pattern of elderly gut microbial communities. In summary, microDELTA can largely solve the issues in tracing the life trajectory of the human microbial communities and generate accurate and flexible models for a broad spectrum of microbial-based longitudinal researches.


Subject(s)
Deep Learning , Gastrointestinal Microbiome , Microbiota , Infant, Newborn , Infant , Female , Humans , Aged , Diet
5.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36124759

ABSTRACT

Microbial community classification enables identification of putative type and source of the microbial community, thus facilitating a better understanding of how the taxonomic and functional structure were developed and maintained. However, previous classification models required a trade-off between speed and accuracy, and faced difficulties to be customized for a variety of contexts, especially less studied contexts. Here, we introduced EXPERT based on transfer learning that enabled the classification model to be adaptable in multiple contexts, with both high efficiency and accuracy. More importantly, we demonstrated that transfer learning can facilitate microbial community classification in diverse contexts, such as classification of microbial communities for multiple diseases with limited number of samples, as well as prediction of the changes in gut microbiome across successive stages of colorectal cancer. Broadly, EXPERT enables accurate and context-aware customized microbial community classification, and potentiates novel microbial knowledge discovery.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Learning , Machine Learning
6.
Article in English | MEDLINE | ID: mdl-35947567

ABSTRACT

General-purpose protein structure embedding can be used for many important protein biology tasks, such as protein design, drug design and binding affinity prediction. Recent researches have shown that attention-based encoder layers are more suitable to learn high-level features. Based on this key observation, we propose a two-level general-purpose protein structure embedding neural network, called ContactLib-ATT. On local embedding level, a biologically more meaningful contact context is introduced. On global embedding level, attention-based encoder layers are employed for better global representation learning. Our general-purpose protein structure embedding framework is trained and tested on the SCOP40 2.07 dataset. As a result, ContactLib-ATT achieves a SCOP superfamily classification accuracy of 82.4% (i.e., 6.7% higher than state-of-the-art method). On the same dataset, ContactLib-ATT is used to simulate a structure-based search engine for remote homologous proteins, and our top-10 candidate list contains at least one remote homolog with a probability of 91.9%.

7.
Ann Rheum Dis ; 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35985811

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is a progressive disease including four stages, where gut microbiome is associated with pathogenesis. We aimed to investigate stage-specific roles of microbial dysbiosis and metabolic disorders in RA. METHODS: We investigated stage-based profiles of faecal metagenome and plasma metabolome of 76 individuals with RA grouped into four stages (stages I-IV) according to 2010 RA classification criteria, 19 individuals with osteroarthritis and 27 healthy individuals. To verify bacterial invasion of joint synovial fluid, 16S rRNA gene sequencing, bacterial isolation and scanning electron microscopy were conducted on another validation cohort of 271 patients from four RA stages. RESULTS: First, depletion of Bacteroides uniformis and Bacteroides plebeius weakened glycosaminoglycan metabolism (p<0.001), continuously hurting articular cartilage across four stages. Second, elevation of Escherichia coli enhanced arginine succinyltransferase pathway in the stage II and stage III (p<0.001), which was correlated with the increase of the rheumatoid factor (p=1.35×10-3) and could induce bone loss. Third, abnormally high levels of methoxyacetic acid (p=1.28×10-8) and cysteine-S-sulfate (p=4.66×10-12) inhibited osteoblasts in the stage II and enhanced osteoclasts in the stage III, respectively, promoting bone erosion. Fourth, continuous increase of gut permeability may induce gut microbial invasion of the joint synovial fluid in the stage IV. CONCLUSIONS: Clinical microbial intervention should consider the RA stage, where microbial dysbiosis and metabolic disorders present distinct patterns and played stage-specific roles. Our work provides a new insight in understanding gut-joint axis from a perspective of stages, which opens up new avenues for RA prognosis and therapy.

8.
Genomics Proteomics Bioinformatics ; 20(5): 867-881, 2022 10.
Article in English | MEDLINE | ID: mdl-35477055

ABSTRACT

With the rapid increase of the microbiome samples and sequencing data, more and more knowledge about microbial communities has been gained. However, there is still much more to learn about microbial communities, including billions of novel species and genes, as well as countless spatiotemporal dynamic patterns within the microbial communities, which together form the microbial dark matter. In this work, we summarized the dark matter in microbiome research and reviewed current data mining methods, especially artificial intelligence (AI) methods, for different types of knowledge discovery from microbial dark matter. We also provided case studies on using AI methods for microbiome data mining and knowledge discovery. In summary, we view microbial dark matter not as a problem to be solved but as an opportunity for AI methods to explore, with the goal of advancing our understanding of microbial communities, as well as developing better solutions to global concerns about human health and the environment.


Subject(s)
Artificial Intelligence , Microbiota , Humans , Data Mining/methods
9.
Genome Med ; 14(1): 43, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473941

ABSTRACT

The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possible, allowing identification of the niches where samples originate. However, current methods face challenges when source tracking is scaled up. Here, we introduce a deep learning method based on the Ontology-aware Neural Network approach, ONN4MST, for large-scale source tracking. ONN4MST outperformed other methods with near-optimal accuracy when source tracking among 125,823 samples from 114 niches. ONN4MST also has a broad spectrum of applications. Overall, this study represents the first model-based method for source tracking among sub-million microbial community samples from hundreds of niches, with superior speed, accuracy, and interpretability. ONN4MST is available at https://github.com/HUST-NingKang-Lab/ONN4MST .


Subject(s)
Deep Learning , Microbiota , Humans , Neural Networks, Computer
10.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35091743

ABSTRACT

With the rapid accumulation of microbiome data around the world, numerous computational bioinformatics methods have been developed for pattern mining from such paramount microbiome data. Current microbiome data mining methods, such as gene and species mining, rely heavily on sequence comparison. Most of these methods, however, have a clear trade-off, particularly, when it comes to big-data analytical efficiency and accuracy. Microbiome entities are usually organized in ontology structures, and pattern mining methods that have considered ontology structures could offer advantages in mining efficiency and accuracy. Here, we have summarized the ontology-aware neural network (ONN) as a novel framework for microbiome data mining. We have discussed the applications of ONN in multiple contexts, including gene mining, species mining and microbial community dynamic pattern mining. We have then highlighted one of the most important characteristics of ONN, namely, novel knowledge discovery, which makes ONN a standout among all microbiome data mining methods. Finally, we have provided several applications to showcase the advantage of ONN over other methods in microbiome data mining. In summary, ONN represents a paradigm shift for pattern mining from microbiome data: from traditional machine learning approach to ontology-aware and model-based approach, which has found its broad application scenarios in microbiome data mining.


Subject(s)
Data Mining , Microbiota , Computational Biology , Data Mining/methods , Machine Learning , Neural Networks, Computer
12.
Front Artif Intell ; 4: 672050, 2021.
Article in English | MEDLINE | ID: mdl-34541519

ABSTRACT

Cohort-independent robust mortality prediction model in patients with COVID-19 infection is not yet established. To build up a reliable, interpretable mortality prediction model with strong foresight, we have performed an international, bi-institutional study from China (Wuhan cohort, collected from January to March) and Germany (Würzburg cohort, collected from March to September). A Random Forest-based machine learning approach was applied to 1,352 patients from the Wuhan cohort, generating a mortality prediction model based on their clinical features. The results showed that five clinical features at admission, including lymphocyte (%), neutrophil count, C-reactive protein, lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase, could be used for mortality prediction of COVID-19 patients with more than 91% accuracy and 99% AUC. Additionally, the time-series analysis revealed that the predictive model based on these clinical features is very robust over time when patients are in the hospital, indicating the strong association of these five clinical features with the progression of treatment as well. Moreover, for different preexisting diseases, this model also demonstrated high predictive power. Finally, the mortality prediction model has been applied to the independent Würzburg cohort, resulting in high prediction accuracy (with above 90% accuracy and 85% AUC) as well, indicating the robustness of the model in different cohorts. In summary, this study has established the mortality prediction model that allowed early classification of COVID-19 patients, not only at admission but also along the treatment timeline, not only cohort-independent but also highly interpretable. This model represents a valuable tool for triaging and optimizing the resources in COVID-19 patients.

13.
Front Microbiol ; 12: 642439, 2021.
Article in English | MEDLINE | ID: mdl-33897651

ABSTRACT

A huge quantity of microbiome samples have been accumulated, and more are yet to come from all niches around the globe. With the accumulation of data, there is an urgent need for comparisons and searches of microbiome samples among thousands of millions of samples in a fast and accurate manner. However, it is a very difficult computational challenge to identify similar samples, as well as identify their likely origins, among such a grand pool of samples from all around the world. Currently, several approaches have already been proposed for such a challenge, based on either distance calculation, unsupervised algorithms, or supervised algorithms. These methods have advantages and disadvantages for the different settings of comparisons and searches, and their results are also drastically different. In this review, we systematically compared distance-based, unsupervised, and supervised methods for microbiome sample comparison and search. Firstly, we assessed their accuracy and efficiency, both in theory and in practice. Then we described the scenarios in which one or multiple methods were applicable for sample searches. Thirdly, we provided several applications for microbiome sample comparisons and searches, and provided suggestions on the choice of methods. Finally, we provided several perspectives for the future development of microbiome sample comparison and search, including deep learning technologies for tracking the sources of microbiome samples.

14.
Comput Struct Biotechnol J ; 18: 3615-3622, 2020.
Article in English | MEDLINE | ID: mdl-33304459

ABSTRACT

COVID-19 has been one of the most serious infectious diseases since the end of 2019. However, the original source, as well as the treatment and prevention of causative agent of COVID-19 (namely SARS-CoV-2) are still unclear nearly a year after its publicly report. The microbiome approach, which has emerged in recent years focusing on human-related microbes, has become one of the promising avenues for source tracking, treatment, and prevention of a variety of infectious diseases including COVID-19. In this review, we summarized the microbiome approach as a supplementary approach for source tracking, treatment, and prevention of SARS-CoV-2 infection. We first provided background information on SARS-CoV-2 and microbiome approaches. Then we illustrated current strategies of microbiome methods to assist three aspects of COVID-19 research, namely source tracking, treatment, and prevention, respectively. Finally, we summarized the microbiome approaches and provided perspectives for future studies on faster and more effective SARS-CoV-2 epidemiology and pathogenesis based on microbiome approaches.

15.
Front Microbiol ; 10: 1579, 2019.
Article in English | MEDLINE | ID: mdl-31354673

ABSTRACT

Large-scale campus resembles a small "semi-open community," harboring disturbances from the exchanges of people and vehicles, wherein stressors such as temperature and population density differ among the ground surfaces of functional partitions. Therefore, it represents a special ecological niche for the study on microbial ecology in the process of urbanization. In this study, we investigated outdoor microbial communities in four campuses in Wuhan, China. We obtained 284 samples from 55 sampling sites over six seasons, as well as their matching climatic and environmental records. The structure of campus outdoor microbial communities which influenced by multiple climatic factors featured seasonality. The dispersal influence of human activities on microbial communities also contributed to this seasonal pattern non-negligibly. However, despite the microbial composition alteration in response to multiple stressors, the overall predicted function of campus outdoor microbial communities remained stable across campuses. The spatial-temporal dynamic patterns on campus outdoor microbial communities and its predicted functions have bridged the gap between microbial and macro-level ecosystems, and provided hints toward a better understanding of the effects of climatic factors and human activities on campus micro-environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...