Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Biomed Pharmacother ; 177: 117118, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002440

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.

2.
Front Pharmacol ; 15: 1412816, 2024.
Article in English | MEDLINE | ID: mdl-38978983

ABSTRACT

Background: Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods: High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results: Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion: Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.

4.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698178

ABSTRACT

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Subject(s)
Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Mouth , RNA, Ribosomal, 16S , Feces/microbiology , Humans , Animals , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Mouth/microbiology , Colitis/microbiology , Disease Models, Animal , Inflammatory Bowel Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Dextran Sulfate
6.
Heliyon ; 10(5): e25909, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439839

ABSTRACT

Objective: To investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, ß-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. Methods: The stability of the ATaAL-EO group, the ß-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. Results: In a hot environment of 60 °C, the ß-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and ß-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusion: ß-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.

7.
Int J Nanomedicine ; 19: 945-964, 2024.
Article in English | MEDLINE | ID: mdl-38293612

ABSTRACT

The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.


Subject(s)
Nanoparticles , Neoplasms , Irinotecan/therapeutic use , Cell Line, Tumor , Drug Delivery Systems , Liposomes/therapeutic use , Micelles , Nanoparticles/chemistry , Camptothecin , Neoplasms/drug therapy
8.
Biochem Biophys Res Commun ; 691: 149326, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38035406

ABSTRACT

Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-ß1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-ß1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-ß1 expression and contributing to reduction of LPS induced IgG2b production.


Subject(s)
ARNTL Transcription Factors , Antibody Formation , CLOCK Proteins , Immunoglobulin G , Sleep Deprivation , Sleep Deprivation/genetics , Sleep Deprivation/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Rats, Sprague-Dawley , Mice, Inbred C57BL , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/immunology , CLOCK Proteins/genetics , CLOCK Proteins/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Antibody Formation/drug effects , Antibody Formation/genetics , Stress, Physiological/immunology , Animals , Mice , Rats , Cells, Cultured
9.
Huan Jing Ke Xue ; 44(10): 5788-5799, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827794

ABSTRACT

Soil microbial carbon (C), nitrogen (N), and phosphorus (P) nutrient requirements and metabolic limitations are closely related to the availability of environmental nutrients. However, it is unclear how manure and chemical fertilization shift nutrient limitations for microbes in terms of the soil enzymatic stoichiometry in an apple orchard. Therefore, based on the long-term experiment located in an apple orchard established in 2008, this study applied the theory and method of soil enzyme stoichiometry to systematically investigate the effects of the combined application of manure and chemical fertilizers on soil C, N, and P turnover-related enzyme activities (ß-1,4-glucosidase, BG; leucine aminopeptidase, NAG; ß-1,4-N-acetylglucosaminidase, LAP; and acid or alkaline phosphatase, PHOS) and their stoichiometric characteristics and analyzed their relationships with environmental factors and microbial carbon use efficiency. The experiment was designed with four treatments, such as, no fertilization input as the control (CK), single application of chemical fertilizer (NPK), combined application of manure and chemical fertilizer (MNPK), and single application of manure (M). The results revealed that:① at different growth stages of fruit trees, the soil microbial biomass C (microC) content of manure fertilizer treatments (MNPK and M) was significantly higher than that of no manure fertilizer treatments (CK and NPK). The content of microbial biomass N (microN) in the NPK, MNPK, and M treatments increased by 89%, 269%, and 213%, respectively, compared with that in CK (P<0.05). ② Compared with those in the fertilization treatments, CK had higher leaf N and P contents (29.8 g·kg-1 and 2.17 g·kg-1) at the germination stage, and the leaf P content at the germination stage alone was significantly negatively correlated with soil available phosphorus (AP) content. ③ Soil enzyme stoichiometry analysis demonstrated that all data points in this study were above the 1:1 line, indicating that microbial communities had a strong phosphorus limitation. The range of vector length and angle was 0.56-0.79 and 59.3°-67.7°, respectively, in the growth period of fruit trees, and the vector angle was >45° in this study, which also reflected the strong phosphorus limitation of microorganisms. ④ RDA and random forest model analysis showed that organic carbon and available nitrogen (AN) were the main physical and chemical factors affecting vector length; AP, AN, and soil water content were the main physical and chemical factors affecting vector angle. Combined with SEM analysis, AN and dissolved organic carbon (DOC) directly affected microC and microN, AP directly affected microP and microN, DOC and AP directly affected vector length, and AP and microN directly affected vector angle. In addition, microbial carbon utilization was positively correlated with vector length and negatively correlated with vector angle. In summary, the combined application of manure and chemical fertilizers regulated microbial carbon and phosphorus metabolism by affecting soil carbon and phosphorus content at different growth stages of fruit trees, thereby affecting microbial carbon utilization. This study provides a scientific basis for manure and chemical fertilizers to improve soil quality and maintain soil health.


Subject(s)
Malus , Soil , Soil/chemistry , Fertilizers/analysis , Carbon/analysis , Manure , Soil Microbiology , Seasons , Nitrogen/analysis , Phosphorus/analysis , Agriculture/methods
10.
Huan Jing Ke Xue ; 44(10): 5823-5831, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827797

ABSTRACT

Applying organic fertilizer can increase the contents of soil organic carbon (SOC) and active organic carbon, which are crucial for strengthening soil quality and fertility. Four treatments were established:no fertilization (CK), single application of organic fertilizer (M), single application of chemical fertilizer (NPK), and combined application of organic and inorganic fertilizers (MNPK). The changes in SOC and active components under long-term combined application of organic and inorganic fertilizers were investigated, as were the effects of various fertilization measures on greenhouse gas emissions. Moreover, we evaluated the variation in the soil carbon pool management index (CPMI). Total organic carbon (TOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidized organic carbon (EOC), and particulate organic carbon (POC) increased by 82.84%, 66.30%, 21.12%, 93.28%, and 145.80%, respectively, when compared to those in the CK treatment. The NPK treatment had no discernible effect on SOC and organic carbon components. The combined application of organic and inorganic materials could enhance LI, CPI, and the soil carbon pool management index, with the increase in LI and CPI being the primary reason for the increase in CPMI. Correlation analyses revealed that soil organic carbon components and CPMI were significantly positively correlated with greenhouse gas emissions. The combined application of organic and inorganic materials enhanced cumulative CO2 emissions and warming potential (GWP) but decreased GHGI and yielded a maximum of 56365 kg·hm-2. Compared with that in the CK treatment (29073 kg·hm-2), apple yield in MNPK increased by 93.87%. Therefore, applying organic and inorganic fertilizers in dryland apple orchards can improve the accumulation of organic carbon and stabilize the soil carbon pool, which is more beneficial to the sustainable development of orchards.

11.
Int J Biol Macromol ; 253(Pt 6): 127219, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802456

ABSTRACT

Curcumin (CUR) has good antitumor effects, but its poor aqueous solubility severely limits its clinical application and the systemic nonspecific distribution of the free drug in tumor patients is a key therapeutic challenge. In order to overcome the limitations of free drugs and improve the therapeutic efficacy, we developed novel galactosylated chitosan (GC)-modified nanoparticles (GC@NPs) based on poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PEG-PLGA), which can target asialoglycoprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells and have excellent biocompatibility. The results showed that the drug loading (DL) of CUR was approximately 4.56 %. A favorable biosafety profile was maintained up to concentrations of 500 µg/mL. Furthermore, in vitro cellular assays showed that GC@NPs could be efficiently internalized by HepG2 cells via ASGPR-mediated endocytosis and successfully released CUR for chemotherapy. More importantly, in vivo anti-tumor experiments revealed that GC@NPs were able to accumulate effectively within tumor sites through EPR effect and ASGPR-mediated endocytosis, leading to superior inhibition of tumor growth compared to free CUR. Overall, GC@NPs are a promising CUR nanocarrier for enhanced tumor therapy with a good biosafety profile.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Curcumin , Liver Neoplasms , Nanoparticles , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Nanoparticles/therapeutic use , Particle Size , Drug Carriers
12.
Curr Opin Microbiol ; 75: 102361, 2023 10.
Article in English | MEDLINE | ID: mdl-37527562

ABSTRACT

Over the past decade, our understanding of the composition and function of the human mucosal surface-associated fungal community (i.e. the mycobiome) has rapidly expanded. Fungi colonize at various sites of the mucosal surface at birth and play important roles in the development and homeostasis of immune system throughout adulthood. Here, we review the recent research progresses in the human mycobiome at different body sites, including the gastrointestinal (GI) tract, the respiratory tract, the urogenital tract, the oral cavity, the skin surface, and the tumor tissues. Researchers have made extensive effort in characterizing the interactions between mycobiome and immune system, especially in the GI tract. We discuss the mycobiome dysbiosis and its implications to the progression of diseases such as inflammatory bowel diseases, alcoholic liver diseases, systemic infections, cancers, and so on, indicating the potential of mycobiome-targeting intervention strategy for life-threatening diseases.


Subject(s)
Inflammatory Bowel Diseases , Mycobiome , Infant, Newborn , Humans , Adult , Fungi/genetics , Inflammatory Bowel Diseases/microbiology , Respiratory System
13.
Int J Nanomedicine ; 18: 4275-4311, 2023.
Article in English | MEDLINE | ID: mdl-37534056

ABSTRACT

Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Female , Humans , Curcumin/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Solubility , Drug Carriers/chemistry
14.
Biomed Pharmacother ; 166: 115331, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598477

ABSTRACT

Elemene (ELE) is a group of broad-spectrum anticancer active ingredients with low toxicity extracted from traditional Chinese medicines (TCMs), such as Curcumae Rhizoma and Curcuma Radix, which can exert antitumour activities by regulating various signal pathways and targets. However, the strong hydrophobicity, short half-life, low bioavailability and weak in vivo targeting ability of ELE restrict its use. Targeted drug delivery systems based on nanomaterials are among the most viable methods to overcome these shortcomings. In this review, we first summarize recent studies on the clinical uses of ELE as an adjunct antitumour drug. ELE-based combination strategies have great promise for enhancing efficacy, reducing adverse reactions, and improving patients' quality of life and immune function. Second, we summarize recent studies on the antitumour mechanisms of ELE and ELE-based combination strategies. The potential mechanisms include inducing pyroptosis and ferroptosis, promoting senescence, regulating METTL3-mediated m6A modification, suppressing the Warburg effect, and inducing apoptosis and cell cycle arrest. Most importantly, we comprehensively summarize studies on the combination of targeted drug delivery systems with ELE, including passively and actively targeted drug delivery systems, stimuli-responsive drug delivery systems, and codelivery systems for ELE combined with other therapies, which have great promise in improving drug bioavailability, increasing drug targeting ability, controlling drug release, enhancing drug efficacy, reducing drug adverse effects and reversing MDR. Our summary will provide a reference for the combination of TCMs such as ELE with advanced targeted drug delivery systems in the future.


Subject(s)
Neoplasms , Sesquiterpenes , Humans , Quality of Life , Neoplasms/drug therapy , Drug Delivery Systems , Methyltransferases
15.
Lancet Microbe ; 4(6): e470-e480, 2023 06.
Article in English | MEDLINE | ID: mdl-37121240

ABSTRACT

Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.


Subject(s)
Candidemia , Fluconazole , Adult , Infant, Newborn , Humans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida parapsilosis , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidemia/drug therapy , Candidemia/epidemiology , Azoles/pharmacology , Azoles/therapeutic use
16.
Zhongguo Zhong Yao Za Zhi ; 48(4): 966-977, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872267

ABSTRACT

The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.


Subject(s)
Network Pharmacology , Plant Extracts , Technology, Pharmaceutical , Ethanol , Molecular Docking Simulation , Seeds/chemistry , Ziziphus/chemistry , Plant Extracts/chemistry , Schisandra/chemistry , Fruit/chemistry
17.
Huan Jing Ke Xue ; 44(3): 1542-1552, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922215

ABSTRACT

In order to clarify the differences in the effects of vegetation restoration strategies on soil carbon sequestration and aggregate stability under different water-eroded environments, we collected experimental data from 91 papers and evaluated the response of soil organic carbon (SOC) stock and aggregate stability to vegetation restoration based on Meta-analysis. The results showed the following:① compared with cropland or bare land, forestland/grassland restoration was beneficial to increase SOC stock and improve aggregate stability, but the dominant functions of the two were different. The effect of forestland restoration on carbon sequestration was stronger than that of grassland reforestation, and the effect of grassland restoration on aggregate stability was stronger than that of forestland restoration. ② Multi-factor Meta-analysis showed that the factors that significantly affected SOC were restoration year, soil clay content, vegetation coverage, mean annual precipitation (MAP), mean annual temperature (MAT), and soil depth. The positive effect of vegetation restoration on SOC stock increased with the increase in vegetation coverage rate. Grassland restoration had a more significant effect on SOC stock when soil clay content was 20%-32%, it was more likely to promote the carbon sequestration effect of grassland when MAP>800 mm or MAT<15℃, and there was no significant change in SOC stock under different restoration years. However, the effect of forestland restoration on SOC stock was more significant when soil clay content was>32%. Climate conditions had no limited effect on SOC stock in forestland, and there was a positive effect between SOC stock under forestland restoration and restoration years. ③ Vegetation restoration had stronger significant positive effects on mean weight diameter (MWD) and mean geometric diameter (GMD) when the clay content was 20%-32%, and MWD and GMD increased with the increase in vegetation coverage. ④SOC stock growth could explain 25% and 24% of the variation in the effect value of MWD and GMD, respectively. These results indicated that the formation of SOC was the result of multiple factors, and soil aggregate stability was limited only by vegetation coverage and soil clay content. The increase in SOC stock could promote the improvement of water stability MWD and GMD. These results can clarify the carbon sequestration effect of different vegetation restoration measures in water-eroded environments and provide theoretical reference for the restoration and reconstruction of degraded ecosystems.

18.
Drug Deliv ; 30(1): 1-18, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36597205

ABSTRACT

Cancer is a very heterogeneous disease, and uncontrolled cell division is the main characteristic of cancer. Cancerous cells need a high nutrition intake to enable aberrant growth and survival. To do so, cancer cells modify metabolic pathways to produce energy and anabolic precursors and preserve redox balance. Due to the importance of metabolic pathways in tumor growth and malignant transformation, metabolic pathways have also been given promising perspectives for cancer treatment, providing more effective treatment strategies, and target-specific with minimum side effects. Metabolism-based therapeutic nanomaterials for targeted cancer treatment are a promising option. Numerous types of nanoparticles (NPs) are employed in the research and analysis of various cancer therapies. The current review focuses on cutting-edge strategies and current cancer therapy methods based on nanomaterials that target various cancer metabolisms. Additionally, it highlighted the primacy of NPs-based cancer therapies over traditional ones, the challenges, and the future potential.


Subject(s)
Antineoplastic Agents , Nanoparticles , Nanostructures , Neoplasms , Humans , Neoplasms/pathology , Drug Carriers/therapeutic use , Drug Delivery Systems/methods , Nanoparticles/therapeutic use , Metabolic Networks and Pathways , Nanomedicine/methods
19.
Transplant Cell Ther ; 29(1): 63.e1-63.e5, 2023 01.
Article in English | MEDLINE | ID: mdl-36280104

ABSTRACT

Disruption of the intestinal bacterial microbiota is frequently observed in the context of allogeneic hematopoietic cell transplantation (HCT) and is particularly pronounced in patients who develop graft-versus-host disease (GVHD). Donor fecal microbiota transplantation (FMT) restores gut microbial diversity and reduces GVHD in HCT recipients. The composition of the intestinal fungal community in patients with GVHD, and whether fungal taxa are transferred during FMT are currently unknown. We performed a secondary analysis of our clinical trial of FMT in patients with steroid-refractory GVHD with a focus on the mycobiota. We characterized the fecal mycobiota of 17 patients and healthy FMT donors using internal transcribed spacer amplicon sequencing. The donor who provided the majority of FMT material in our study represents an n-of-one study of the intestinal flora over time. In this donor, mycobiota composition fluctuated over time while the bacterial microbiota remained stable over 16 months. Fungal DNA was detected more frequently in baseline stool samples from patients with steroid-refractory GVHD than in patients with steroid-dependent GVHD. We could detect fungal taxa in the majority of samples but did not see evidence of mycobiota transfer from donor to recipient. Our study demonstrates the feasibility of profiling the mycobiota alongside the more traditional bacterial microbiota, establishes the methodology, and provides a first insight into the mycobiota composition of patients with GVHD.


Subject(s)
Graft vs Host Disease , Microbiota , Mycobiome , Humans , Fecal Microbiota Transplantation/methods , Graft vs Host Disease/therapy , Feces/microbiology , Bacteria/genetics
20.
J Nanobiotechnology ; 20(1): 509, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463199

ABSTRACT

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Neoplasms , United States , Drug Delivery Systems , Half-Life , Biological Availability , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL