Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402819, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958507

ABSTRACT

2D van der Waals (vdW) magnets have recently emerged as a promising material system for spintronic device innovations due to their intriguing phenomena in the reduced dimension and simple integration of magnetic heterostructures without the restriction of lattice matching. However, it is still challenging to realize Curie temperature far above room temperature and controllable magnetic anisotropy for spintronics application in 2D vdW magnetic materials. In this work, the pressure-tuned dome-like ferromagnetic-paramagnetic phase diagram in an iron-based 2D layered ferromagnet Fe3GaTe2 is reported. Continuously tunable magnetic anisotropy from out-of-plane to in-plane direction is achieved via the application of pressure. Such behavior is attributed to the competition between intralayer and interlayer exchange interactions and enhanced DOS near the Fermi level. The study presents the prominent properties of pressure-engineered 2D ferromagnetic materials, which can be used in the next-generation spintronic devices.

2.
Opt Lett ; 49(11): 3226-3229, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824369

ABSTRACT

We propose and demonstrate a data fragment multipath transmission scheme to achieve a secure optical communication based on polarization regulation. A dual-polarization Mach-Zehnder modulator (DPMZM) is driven by digital signals which are scattered by field-programmable gate array (FPGA) and transmitted in multiple paths. By utilizing two orthogonal polarization states, we have achieved a signal transmission under different optical parameters, and the transmission rate of the two paths can reach over 10 Gbps through a 20 km fiber with 2.5 Gbps hopping rate. In addition, we establish a theoretical model to analyze the security of the system and simulate brute force cracking; the probability of cracking the minimum information unit is 1.53 × 10-53. This proves that it is difficult to obtain a user data even using the fastest computers. Our scheme has provided, to our knowledge, a new approach for physical layer security.

3.
Physiol Genomics ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808774

ABSTRACT

The intratumoral microbiota can modulate the tumor immune microenvironment (TIME), however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of bladder (UCB) remains unclear. To address this, we collected 402 patients with UCB with paired host transcriptome and tumor microbiome samples from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genus Lachnoclostridiumand Sutterellain tumors could indirectly promote EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for targeted therapy of UCB.

4.
ACS Sens ; 9(4): 2134-2140, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38626725

ABSTRACT

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Subject(s)
DNA , DNA/chemistry , Tungsten Compounds/chemistry , Microscopy/methods
5.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38625005

ABSTRACT

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Subject(s)
Biomarkers , Biosensing Techniques , Chemokine CCL2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/urine , Diabetic Nephropathies/diagnosis , Biosensing Techniques/methods , Chemokine CCL2/urine , Biomarkers/urine , Limit of Detection , Electrochemical Techniques/methods
6.
Clin Oral Investig ; 28(4): 221, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38499908

ABSTRACT

OBJECTIVES: To establish a three-dimensional finite element model of the upper palate, pharyngeal cavity, and levator veli palatini muscle in patients with unilateral complete cleft palate, simulate two surgical procedures that the two-flap method and Furlow reverse double Z method, observe the stress distribution of the upper palate soft tissue and changes in pharyngeal cavity area after different surgical methods, and verify the accuracy of the model by reconstructing and measuring the levator veli palatini muscle. MATERIALS AND METHODS: Mimics, Geomagic, Ansys, and Hypermesh were applied to establish three-dimensional finite element models of the pharyngeal cavity, upper palate, and levator veli palatini muscle in patients with unilateral complete cleft palate. The parameters including length, angle, and cross-sectional area of the levator veli palatini muscle etc. were measured in Mimics, and two surgical procedures that two-flap method and Furlow reverse double Z method were simulated in Ansys, and the area of pharyngeal cavity was measured by hypermesh. RESULTS: A three-dimensional finite element model of the upper palate, pharyngeal cavity, and bilateral levator veli palatini muscle was established in patients with unilateral complete cleft palate ; The concept of horizontal projection characteristics of the palatal dome was applied to the finite element simulation of cleft palate surgery, vividly simulating the displacement and elastic stretching of the two flap method and Furlow reverse double Z method during the surgical process; The areas with the highest stress in the two-flap method and Furlow reverse double Z method both occur in the hard soft palate junction area; In resting state, as measured, the two flap method can narrow the pharyngeal cavity area by 50.9%, while the Furlow reverse double Z method can narrow the pharyngeal cavity area by 65.4%; The measurement results of the levator veli palatini muscle showed no significant difference compared to previous studies, confirming the accuracy of the model. CONCLUSIONS: The finite element method was used to establish a model to simulate the surgical procedure, which is effective and reliable. The area with the highest postoperative stress for both methods is the hard soft palate junction area, and the stress of the Furlow reverse double Z method is lower than that of the two-flap method. The anatomical conditions of pharyngeal cavity of Furlow reverse double Z method are better than that of two-flap method in the resting state. CLINICAL RELEVANCE: This article uses three-dimensional finite element method to simulate the commonly used two-flap method and Furlow reverse double Z method in clinical cleft palate surgery, and analyzes the stress distribution characteristics and changes in pharyngeal cavity area of the two surgical methods, in order to provide a theoretical basis for the surgeon to choose the surgical method and reduce the occurrence of complications.


Subject(s)
Cleft Palate , Velopharyngeal Insufficiency , Humans , Cleft Palate/surgery , Cleft Palate/complications , Finite Element Analysis , Velopharyngeal Insufficiency/complications , Velopharyngeal Insufficiency/surgery , Palatal Muscles/surgery , Palate, Soft/surgery , Palate, Hard
7.
Small ; : e2312175, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534021

ABSTRACT

Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.

8.
Curr Med Sci ; 44(1): 51-63, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38057536

ABSTRACT

Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.


Subject(s)
Ferroptosis , Urinary Bladder Neoplasms , Humans , Ferroptosis/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Cell Death , Heat-Shock Proteins , Iron
9.
Phys Chem Chem Phys ; 25(48): 32863-32867, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38048069

ABSTRACT

[CH3NH3][Co(HCOO)3] is the first perovskite-like metal-organic framework exhibiting spin-driven magnetoelectric effects. However, the high-pressure tuning effects on the magnetic properties and crystal structure of [CH3NH3][Co(HCOO)3] have not been studied. In this work, alongside ac magnetic susceptibility measurements, we investigate the magnetic transition temperature evolution under high pressure. Upon increasing the pressure from atmospheric pressure to 0.5 GPa, TN (15.2 K) remains almost unchanged. Continuing to compress the sample results in TN gradually decreasing to 14.8 K at 1.5 GPa. This may be due to pressure induced changes in the bond distance and bond angle of the O-C-O superexchange pathway. In addition, by using high pressure powder X-ray diffraction and Raman spectroscopy, we conducted in-depth research on the pressure dependence of the lattice parameters and Raman modes of [CH3NH3][Co(HCOO)3]. The increase in pressure gives rise to a phase transition from the orthorhombic Pnma to a monoclinic phase at approximately 6.13 GPa. Our study indicates that high pressure can profoundly alter the crystal structure and magnetic properties of perovskite type MOF materials, which could inspire new endeavors in exploring novel phenomena in compressed metal-organic frameworks.

10.
J Colloid Interface Sci ; 651: 938-947, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37579668

ABSTRACT

Ultrasensitive and rapid detection of biomarkers is among the upmost priorities in promoting healthcare advancements. Improved sensitivity of photonic sensors based on two-dimensional (2D) materials have brought exciting prospects for achieving real-time and label-free biosensing at dilute target concentrations. Here, we report a high-sensitivity surface plasmon resonance (SPR) RNA sensor using metallic 2D GeP5 nanosheets as the sensing material. Theoretical evaluations revealed that the presence of GeP5 nanosheets can greatly enhance the plasmonic electric field of the Au film thereby boosting sensing sensitivity, and that optimal sensitivity (146° RIU-1) can be achieved with 3-nm-thick GeP5. By functionalizing GeP5 nanosheets with specific cDNA probes, detection of SARS-CoV-2 RNA sequences were achieved using the GeP5-based SPR sensor, with high sensitivity down to a detection limit of 10 aM and excellent selectivity. This work demonstrates the immense potential of GeP5-based SPR sensors for advanced biosensing applications and paves the way for utilizing GeP5 nanosheets in novel sensor devices.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Surface Plasmon Resonance/methods , RNA, Viral , COVID-19/diagnosis , SARS-CoV-2/genetics , Biosensing Techniques/methods
11.
Small ; 19(45): e2303026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37394706

ABSTRACT

Plasmonic biosensing is a label-free detection method that is commonly used to measure various biomolecular interactions. However, one of the main challenges in this approach is the ability to detect biomolecules at low concentrations with sufficient sensitivity and detection limits. Here, 2D ferroelectric materials are employed to address the issues with sensitivity in biosensor design. A plasmonic sensor based on Bi2 O2 Se nanosheets, a ferroelectric 2D material, is presented for the ultrasensitive detection of the protein molecule. Through imaging the surface charge density of Bi2 O2 Se, a detection limit of 1 fM is achieved for bovine serum albumin (BSA). These findings underscore the potential of ferroelectric 2D materials as critical building blocks for future biosensor and biomaterial architectures.

12.
Front Psychol ; 13: 1030125, 2022.
Article in English | MEDLINE | ID: mdl-36467202

ABSTRACT

Major public health emergencies always test the credibility of the government. The success of governments' strategies relies on trust in government and broad acceptance of response measures. The profound experience of the epidemic often has a long-term impact on people's cognition. We construct a difference-in-difference estimator by combining the variations of epidemic effects across cohorts and regions, and intend to evaluate the long-term effect of individuals' early SARS experience on trust in government during the COVID-19 pandemic. We also use the instrumental variable method to overcome the endogenous problem caused by two-way causality. The results show that the impact of COVID-19 has significantly reduced trust in government of the groups who had not been exposed to the SARS epidemic (including groups who were in early childhood and the unborn during the SARS outbreak). While it has a positive impact on trust in government of people experienced SARS in adolescence, and only a little negative impact on trust in government of people experienced SARS in adulthood. We also find that the impact of COVID-19 mainly reduced the trust in government among groups socially vulnerable or without SARS experience (e.g., low income, low social status etc.). The results suggest that: (a) the trust created by governments' successful anti-epidemic measures is long-lasting; (b) governments should pay more attention to their trust among socially vulnerable groups.

13.
Nat Commun ; 13(1): 6938, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376300

ABSTRACT

Valence fluctuation of interacting electrons plays a crucial role in emergent quantum phenomena in correlated electron systems. The theoretical rationale is that this effect can drive a band insulator into a superconductor through charge redistribution around the Fermi level. However, the root cause of such a fluctuating leap in the ionic valency remains elusive. Here, we demonstrate a valence-skipping-driven insulator-to-superconductor transition and realize quasi-two-dimensional superconductivity in a van der Waals insulator GeP under pressure. This is shown to result from valence skipping of the Ge cation, altering its average valency from 3+ to 4+, turning GeP from a layered compound to a three-dimensional covalent system with superconducting critical temperature reaching its maximum of 10 K. Such a valence-skipping-induced superconductivity with a quasi-two-dimensional nature in thin samples, showing a Berezinskii-Kosterlitz-Thouless-like character, is further confirmed by angle-dependent upper-critical-field measurements. These findings provide a model system to examine competing order parameters in valence-skipping systems.

14.
Opt Express ; 30(21): 38077-38094, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258380

ABSTRACT

A silicon waveguide with reverse-biased p-i-n junction is used to experimentally demonstrate all-optical regeneration of non-return-to-zero (NRZ) on-off keying (OOK) signal based on four-wave mixing. The silicon waveguide allows a high conversion efficiency of -12 dB. The 0.22 dB (1.1 dB) quality (Q) factor and 0.74 dB (6.3 dB) extinction ratio (ER) improvements on average are achieved for 100 Gb/s (50 Gb/s) NRZ OOK signal regeneration at different receiving powers via the optimal match between the input signal optical power and input-output transfer curve. To the best of our knowledge, this silicon-based all-optical regenerator exhibits superior regeneration performance, including large ER and Q factor improvements, and the highest regeneration speed of NRZ OOK signal, and it has wide applications in 5 G/6 G networks.

15.
J Phys Condens Matter ; 34(48)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36174548

ABSTRACT

Pressure, as an independent thermodynamic parameter, is an effective tool to obtain novel material system and exotic physical phenomena not accessible at ambient conditions, because it profoundly modifies the charge, orbital and spin state by reducing the interatomic distance in crystal structure. However, the studies of magnetoelectricity and multiferroicity are rarely extended to high pressure dimension due to properties measured inside the high pressure vessel being a challenge. Here we reported the temperature-magnetic field-pressure magnetoelectric (ME) phase diagram of Y type hexaferrite Ba0.4Sr1.6Mg2Fe12O22derived from static pyroelectric current measurement and dynamic magnetodielectric in diamond anvil cell and piston cylinder cell. We found that a new spin-driven ferroelectric phase emerged atP= 0.7 GPa and sequentially ME effect disappeared aroundP= 4.3 GPa. The external pressure may enhance easy plane anisotropy to destabilize the longitudinal conical magnetic structure with the suppression of ME coefficient. These results offer essential clues for the correlation between ME effect and magnetic structure evolution under high pressure.

16.
Inorg Chem ; 61(25): 9631-9637, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696435

ABSTRACT

Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.

17.
Adv Mater ; 34(27): e2201209, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35448916

ABSTRACT

The technological appeal of van der Waals ferromagnetic materials is the ability to control magnetism under external fields with desired thickness toward novel spintronic applications. For practically useful devices, ferromagnetism above room temperature or tunable magnetic anisotropy is highly demanded but remains challenging. To date, only a few layered materials exhibit unambiguous ferromagnetic ordering at room temperature via gating techniques or interface engineering. Here, it is demonstrated that the magnetic anisotropy control and dramatic modulation of Curie temperature (Tc ) up to 400 K are realized in layered Fe5 GeTe2 via the high-pressure diamond-anvil-cell technique. Magnetic phases manifesting with in-plane anisotropic, out-of-plane anisotropic and nearly isotropic magnetic states can be tuned in a controllable way, depicted by the phase diagram with a maximum Tc up to 360 K. Remarkably, the Tc can be gradually enhanced to above 400 K owing to the Fermi surface evolution during a pressure loading-deloading process. Such an observation sheds light on the understanding and control of emergent magnetic states in practical spintronic applications.

18.
Anal Sci ; 38(2): 299-305, 2022 02.
Article in English | MEDLINE | ID: mdl-35314975

ABSTRACT

We have developed a new method of one-step simultaneous detection for three pesticides including acetamiprid, atrazine and carbendazim based on organic framework nanomaterial Cu/UiO-66 and three different fluorescent dyes labeled pesticide aptamers. Cu/UiO-66 can be easily combined with pesticide aptamers through strong coordination, and then aptamers were adsorbed to the surface of Cu/UiO-66, which brings the dyes and Cu/UiO-66 into close proximity. Then, the fluorescence of dyes was quenched by Cu/UiO-66. When the target pesticides appeared, the aptamers reacted with corresponding target pesticides and formed special spatial structure, and then the dyes were far away from the surface of Cu/UiO-66 and the fluorescence of dyes is resumed. Thus, the one-step simultaneous detection for three pesticides can be achieved by synchronous fluorescence analysis. The detection limit of acetamiprid, atrazine and carbendazim were 0.1 nmol/L, 1.6 nmol/L, and 0.3 nmol/L, respectively. This method has a good sensitivity, low detection limit, and high selectivity. We have developed a new method of one-step simultaneous detection for three pesticides including acetamiprid, atrazine and carbendazim based on a multi-color fluorescent probe composed of bimetallic organic framework nanomaterials Cu/UiO-66 and three different fluorescent dyes and phosphate double-labeled aptamers of acetamiprid, atrazine and carbendazim.


Subject(s)
Nanostructures , Pesticides , Fluorescent Dyes , Metal-Organic Frameworks , Oligonucleotides , Phthalic Acids
19.
Math Biosci Eng ; 19(2): 1659-1676, 2022 01.
Article in English | MEDLINE | ID: mdl-35135223

ABSTRACT

Federated learning is a novel framework that enables resource-constrained edge devices to jointly learn a model, which solves the problem of data protection and data islands. However, standard federated learning is vulnerable to Byzantine attacks, which will cause the global model to be manipulated by the attacker or fail to converge. On non-iid data, the current methods are not effective in defensing against Byzantine attacks. In this paper, we propose a Byzantine-robust framework for federated learning via credibility assessment on non-iid data (BRCA). Credibility assessment is designed to detect Byzantine attacks by combing adaptive anomaly detection model and data verification. Specially, an adaptive mechanism is incorporated into the anomaly detection model for the training and prediction of the model. Simultaneously, a unified update algorithm is given to guarantee that the global model has a consistent direction. On non-iid data, our experiments demonstrate that the BRCA is more robust to Byzantine attacks compared with conventional methods.


Subject(s)
Computer Security , Machine Learning , Algorithms
20.
ACS Appl Mater Interfaces ; 13(40): 47560-47571, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34597012

ABSTRACT

GeP5, as the most representative phosphorus-based material in two-dimensional layered phosphorous compounds, has shown a fairly bright application prospect in the field of energy storage because of its ultrahigh electrical conductivity. However, high-yield exfoliation methods and effective structure construction strategies for GeP5 nanosheets are still missing, which completely restricts the further application of GeP5-based nanocomposites. Here, we not only improved the yield of GeP5 nanosheets by a liquid nitrogen-assisted liquid-phase exfoliation technique but also constructed the GeP5@RuO2 nanocomposites with the 0D/2D heterostructure by in situ introduction of ultrafine RuO2 nanoparticles on highly conductive GeP5 nanosheets using a simple hydrothermal synthesis method, and then applying it to micro-supercapacitors (MSCs) as electrode materials through a mask-assisted vacuum filtration technique. It is precisely because of the synergy of the electrical double-layer material, GeP5 nanosheets and the pseudocapacitance material RuO2 nanoparticles that endows the GeP5@RuO2 electrode with outstanding electrochemical performance in micro-supercapacitors with a large specific capacitance of 129.5 mF cm-2/107.9 F cm-3, high energy density of 17.98 µWh cm-2, remarkable long-term cycling stability with 98.4% capacitance retention after 10 000 cycles, the exceptional mechanical stability, outstanding environmental stability, and excellent integration features. This work opens up a new avenue to construct GeP5-based nanocomposites as a most promising novel electrode material for practical application in flexible portable/wearable micro-nanoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...