Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Biochem Biophys Res Commun ; 704: 149660, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38428303

ABSTRACT

Soybean is an economically important crop, which often suffers various abiotic stresses. REVEILLE (RVE) genes have been generally considered as circadian oscillators to mediate diverse developmental processes and plant response to environmental stresses. Addressing their roles is of significance for utilizing them to enhance agronomic traits in crops. However, our understanding of soybean RVEs is extremely limited. In the study, we investigated the expression patterns of soybean CCA1-like genes under salt stress using our RNA-Seq data. Subsequently, a salt stress-inducible gene, GmRVE8a, was chosen for further study. Phylogenetic analysis indicated that GmRVE8a is most closely related to Arabidopsis RVE4 and RVE8. Also, GmRVE8a showed circadian expression pattern with 24 h rhythmic period, suggesting that it might be a clock-regulated gene. Moreover, transgenic Arabidopsis lines over-expressing GmRVE8a were generated. It was observed that ectopic over-expression of GmRVE8a caused a significant delay in flowering. Further observation indicated that under salt and drought stress, transgenic seedlings were stronger than wild type. Consistently, three-week-old transgenic plants grew better than wild type under salt and drought conditions, and the MDA content in transgenic lines was significantly lower than wild type, suggesting that GmRVE8a might be a positive regulator in response to salt and drought stress. Intriguingly, Y2H assay indicated that GmRVE8a physically interacted with a drought-tolerant protein, GmNAC17. Overall, our findings provided preliminary information regarding the functional roles of GmRVE8a in response to salt and drought stress.


Subject(s)
Arabidopsis , Glycine max , Glycine max/genetics , Arabidopsis/metabolism , Drought Resistance , Phylogeny , Salt Stress/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123953, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38290282

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) contained in a large amount of oily sludge produced in petroleum and petrochemical production has become one of the main environmental protection concerns in the industry. The accurate determination of PAHs is of great significance in the field of petroleum geochemistry and environmental protection. In this study, Raman spectroscopy combined with partial least squares (PLS) based on different hybrid spectral preprocessing methods and variable selection strategies was proposed for quantitative analysis of phenanthrene, fluoranthrene, fluorene and naphthalene (Phe, Flt, Flu and Nap) in oil sludge. At first, PAHs in oily sludge was extracted by solid-liquid extraction with methanol as extractant, and Raman spectra of 21 oily sludge samples were collected by portable Raman spectrometer. And then, the influence of first derivative (D1st), wavelet transform (WT) and their hybrid spectral preprocessing on the predictive performance of the PLS calibration model was discussed. Thirdly, biPLS (backward interval partial least squares) was used to optimize the input variables before and after the hybrid spectral preprocessing methods, and the influence of biPLS and the hybrid spectral preprocessing sequence on the predictive performance of the PLS calibration model was discussed. Finally, the predictive performance of the PLS calibration model was optimized according to the results of leave-one-out cross-validation (LOOCV) method. The results show that the biPLS-D1st-WT-PLS calibration model established by using biPLS first to select the characteristic variables, followed by hybrid spectral preprocessing of the characteristic variables, has better prediction performance for Flt (determination coefficient of prediction (R2P) = 0.9987, and the mean relative error of prediction (MREP) = 0.0606). For Phe, Flu and Nap, the WT-biPLS-PLS calibration model has a better predictive effect (R2P are 0.9995, 0.9996 and 0.9983, and MREP are 0.0426, 0.0719 and 0.0497, respectively). In general, portable Raman spectroscopy combined with PLS calibration model based on different hybrid spectral preprocessing and variable selection strategies has achieved good prediction results for quantitative analysis of four PAHs in oily sludge. It is a new strategy to firstly select the characteristic variables of the original spectra, and secondly to preprocess the characteristic variables by the hybrid spectral preprocessing, which will provide a new idea for the establishment of quantitative analysis methods for PAHs in oily sludge.

3.
Plant Biotechnol J ; 22(2): 386-400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797061

ABSTRACT

Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.


Subject(s)
Arabidopsis , Blueberry Plants , MicroRNAs , Fruit/genetics , Fruit/metabolism , Anthocyanins , Blueberry Plants/genetics , Blueberry Plants/metabolism , Color , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism , Arabidopsis/genetics , Chlorophyll/metabolism , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Eur J Nutr ; 63(2): 639-651, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129361

ABSTRACT

PURPOSE: Pancreatic cancer (PC) is one of the most deadly human malignancies. Curcumin is a natural polyphenolic compound with wide-ranging pharmacological effects. Growing evidence suggests that curcumin has anticancer activity against PC, but the mechanism remains incompletely elucidated. This study aimed to investigate the effects and mechanisms of curcumin on the invasion and migration of PC cells. METHODS: Effect of curcumin on tissue factor pathway inhibitor (TFPI)-2 mRNA expression in PC cells was initially identified using qRT-PCR. Cytotoxicity of curcumin was assessed with MTT assays and IC50 was calculated. Involvement of ERK and JNK pathways, as well as protein expression of TFPI-2 and epithelial-mesenchymal transition (EMT)-related markers, were detected using immunoblotting. Invasion and migration of PC cells were examined using Transwell assays. TFPI-2 expression was manipulated by transfection with siRNA and shRNA. Rescue assays were used to validate the effect of curcumin on cell invasion and migration via TFPI-2. RESULTS: Curcumin increased the expression of TFPI-2 mRNA and protein in PC cells and attenuated cell invasion and migration. Curcumin also inhibited ERK and JNK pathways and EMT in PC cells. Knockdown of TFPI-2 partially reversed the inhibition of ERK and JNK pathways and EMT by curcumin. Mechanistically, curcumin upregulated TFPI-2, thereby inhibiting the ERK and JNK pathways, leading to the inhibition of EMT in PC cells. CONCLUSION: Collectively, curcumin inhibits ERK- and JNK-mediated EMT through upregulating TFPI-2, which in turn suppresses the migration and invasion of PC cells. These findings provide new insights into the antitumor mechanism of curcumin.


Subject(s)
Curcumin , Glycoproteins , Pancreatic Neoplasms , Humans , Curcumin/pharmacology , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Messenger , Cell Proliferation
5.
BMC Genomics ; 24(1): 505, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648968

ABSTRACT

BACKGROUND: Blueberries (Vaccinium corymbosum) are regarded as "superfoods" attributed to large amounts of anthocyanins, a group of flavonoid metabolites, which provide pigmentation in plant and beneficial effects for human health. MYB transcription factor is one of vital components in the regulation of plant secondary metabolism, which occupies a dominant position in the regulatory network of anthocyanin biosynthesis. However, the role of MYB family in blueberry responding to anthocyanin biosynthesis remains elusive. RESULTS: In this study, we conducted a comprehensive analysis of VcMYBs in blueberry based on the genome data, including phylogenetic relationship, conserved motifs, identification of differentially expressed MYB genes during fruit development and their expression profiling, etc. A total of 437 unique MYB sequences with two SANT domains were identified in blueberry, which were divided into 3 phylogenetic trees. Noticeably, there are many trigenic and tetragenic VcMYBs pairs with more than 95% identity to each other. Meanwhile, the transcript accumulations of VcMYBs were surveyed underlying blueberry fruit development, and they showed diverse expression patterns, suggesting various functional roles in fruit ripening. More importantly, distinct transcript profiles between skin and pulp of ripe fruit were observed for several VcMYBs, such as VcMYB437, implying the potential roles in anthocyanin biosynthesis. CONCLUSIONS: Totally, 437 VcMYBs were identified and characterized. Subsequently, their transcriptional patterns were explored during fruit development and fruit tissues (skin and pulp) closely related to anthocyanin biosynthesis. These genome-wide data and findings will contribute to demonstrating the functional roles of VcMYBs and their regulatory mechanisms for anthocyanins production and accumulation in blueberry in the future study.


Subject(s)
Anthocyanins , Blueberry Plants , Humans , Anthocyanins/genetics , Blueberry Plants/genetics , Fruit/genetics , Phylogeny , Secondary Metabolism
6.
Aging (Albany NY) ; 15(14): 7038-7055, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37466419

ABSTRACT

Colorectal cancer (CRC) often has a poor prognosis and identifying useful and novel agents for treating CRC is urgently required. This study aimed to examine molecular markers associated with CRC prognosis and to identify potential drug candidates. The differentially expressed genes (DEGs) of CRC in TCGA were identified. The genes associated with CRC, summarized from NCBI-gene, OMIM, and the DEGs, were used to construct a co-expression network by WGCNA. Moreover, the co-expression genes from modules of interest were used to carry out functional enrichment. A total of 2742 DEGs, including 1674 upregulated and 1068 downregulated genes, were identified. Thirteen co-expression modules were constructed with WGCNA. Brown and blue co-expression modules with significant differences in disease phenotype were found. Functional enrichment analysis showed that genes in the brown module were mainly related to cell cycle, cell proliferation, DNA replication, and RNA transport. The genes in the blue module were mainly associated with fatty acid degradation, sulfur metabolism, PPAR signaling pathway and bile secretion. In addition, both the genes in brown and blue were associated with tumor staging. Some prognostic markers and candidate small molecules drugs for CRC treatment were identified. In conclusion, we revealed molecular biomarker profiles in CRC by systematic bioinformatics analysis, constructed regulatory networks of mRNA, ncRNA and transcriptional regulators (TFs), and identified potential drugs targeting hub proteins and TFs.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Computational Biology , Prognosis , Biomarkers, Tumor/genetics , Neoplasm Staging , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic
7.
Chemosphere ; 321: 138141, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804251

ABSTRACT

Numerous researches have been conducted on the effects of biotic and abiotic-induced aging on the physicochemical characteristics and functions of biochar; however, the impacts of earthworm-induced aging on biochar have not been reported. Hence, we conducted a microscopic experiment simulating a 'drilosphere' to explore the influence of earthworm activity on the natural aging of rice husk biochar (RHBC) through the difference in biochar characteristics after aging in drilosphere and non-drilosphere. The earthworm activity increases the available nitrogen (AN) and dissolved organic matter (DOM) contents of aged RHBC and changes its composition. The increase of DOM and AN content may recruit more microorganisms to colonize biochar and accelerate the biological oxidation of biochar. Furthermore, earthworm activity significantly increased the contents of oxygen (O) and O-containing functional groups in the aged RHBC and decreased the stability (aromaticity) of the aged RHBC, suggesting that the earthworm activity accelerates the natural aging of biochar. Earthworm feeding promotes physical damage to biochar. Besides, the earthworm activity decreased the pH, hydrophilicity and specific surface area (SSA) of aged RHBC but enhanced the adsorption capacity of aged RHBC for heavy metals. The higher content of O-containing functional groups on the surface of drilosphere-aged RHBC was the main reason for its higher adsorption performance. Earthworm feeding promotes physical damage to biochar. These results indicate that earthworm activity can accelerate the natural aging of biochar and alter its physicochemical characteristics and functions. This study illustrates how biochar characteristics change in earthworm-soil systems, which will help scientifically evaluate the long-term effectiveness of biochar.


Subject(s)
Oligochaeta , Oryza , Soil Pollutants , Animals , Charcoal/chemistry , Soil/chemistry , Adsorption , Oryza/chemistry , Soil Pollutants/analysis , Nitrogen
10.
Cancer Med ; 12(3): 3731-3743, 2023 02.
Article in English | MEDLINE | ID: mdl-35879877

ABSTRACT

Pancreatic cancer (PC) is a deadly disease, and its post-transcriptional gene regulation mechanism remains unclear. The abundant extracellular matrix (ECM) in PC plays an important role in tumor progression. This study is the first to focus on the role of N6 -methyladenosine (m6 A) RNA methylation, an emerging post-transcriptional regulatory mechanism, in the regulation of the ECM in PC. Here, we found that ADAMTS2, COL12A1, and THBS2 were associated with the prognosis of PC by comprehensive analysis of differentially expressed genes from two independent GEO expression profile datasets and m6 A-related genes in RMVar database (PAAD). GO and KEGG enrichment analysis found that these m6 A-related targets are chiefly functionally concentrated in the ECM region and participate in ECM signal transduction. Correlation analysis revealed that these genes can be regulated by the demethylase FTO. Cell biology function assays showed that knockdown of FTO-inhibited PC cell abilities to migrate and invade in vitro. qRT-PCR and MeRIP experiments showed that after knockdown of FTO, the mRNA levels of ADAMTS2, COL12A1, and THBS2 and their m6 A modification levels were significantly reduced. These results indicate that m6 A RNA demethylation is associated with the regulation of ECM in PC. In conclusion, m6 A RNA demethylase FTO regulates ECM-related genes and promotes PC cell abilities to migrate and invade, our work provides a new perspective on the molecular mechanism of PC progression.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Extracellular Matrix , Pancreatic Neoplasms , Humans , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Cell Movement , Extracellular Matrix/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
11.
BMC Genomics ; 23(1): 820, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510141

ABSTRACT

BACKGROUND: BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS: In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS: Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Salt Stress/genetics , Phylogeny , Stress, Physiological/genetics
12.
Curr Oncol ; 29(11): 8146-8159, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36354703

ABSTRACT

(1) Background: The aim of this study was to identify risk factors for distant metastasis of pancreatic ductal adenocarcinoma (PDAC) and develop a valid predictive model to guide clinical practice; (2) Methods: We screened 14328 PDAC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015. Lasso regression analysis combined with logistic regression analysis were used to determine the independent risk factors for PDAC with distant metastasis. A nomogram predicting the risk of distant metastasis in PDAC was constructed. A receiver operating characteristic (ROC) curve and consistency-index (C-index) were used to determine the accuracy and discriminate ability of the nomogram. A calibration curve was used to assess the agreement between the predicted probability of the model and the actual probability. Additionally, decision curve analysis (DCA) and clinical influence curve were employed to assess the clinical utility of the nomogram; (3) Results: Multivariate logistic regression analysis revealed that risk factors for distant metastasis of PDAC included age, primary site, histological grade, and lymph node status. A nomogram was successfully constructed, with an area under the curve (AUC) of 0.871 for ROC and a C-index of 0.871 (95% CI: 0.860-0.882). The calibration curve showed that the predicted probability of the model was in high agreement with the actual predicted probability. The DCA and clinical influence curve showed that the model had great potential clinical utility; (4) Conclusions: The risk model established in this study has a good predictive performance and a promising potential application, which can provide personalized clinical decisions for future clinical work.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Nomograms , Neoplasm Staging , Prognosis , Retrospective Studies , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
13.
Int J Oncol ; 61(4)2022 10.
Article in English | MEDLINE | ID: mdl-35929518

ABSTRACT

Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non­coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC­related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease­free survival of patients with PC according to the analysis of The Cancer Genome Atlas­derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of ß­catenin protein to hyperactivate the WNT/ß­catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK­3ß and perturbed the interaction between GSK­3ß and AXIN1, thereby preventing the formation of the ß­catenin degradation complex and reducing the degradation of ß­catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.


Subject(s)
Pancreatic Neoplasms , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism , Pancreatic Neoplasms
14.
Rev Assoc Med Bras (1992) ; 68(4): 470-475, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35649069

ABSTRACT

OBJECTIVE: Heat shock protein A2 has been reported to be tightly associated with tumorigenesis and tumor progression. This study aimed to determine the oncogenic and immunological roles of Heat shock protein A2 in pancreatic cancer by bioinformatics. METHODS: Expression of Heat shock protein A2 in tumorous and normal specimens of pancreatic cancer was analyzed using the Cancer Genome Atlas and the Cancer Genome Atlas + Genotype-Tissue Expression data sets, respectively. Relationships of Heat shock protein A2 expression with immune infiltrates in pancreatic cancer were assessed. Heat shock protein A2-associated coexpressed genes in pancreatic cancer were obtained, followed by the implementation of enrichment analysis. RESULTS: The data demonstrated that Heat shock protein A2 was significantly overexpressed in tumorous samples compared with normal samples. Heat shock protein A2 expression was remarkably positively interrelated with CD8+ T cell, neutrophil, dendritic cell, and macrophage, but not with CD4+ T and B cells. Heat shock protein A2 expression was markedly positively relevant to both cancer-associated fibroblast and endothelial cell. Enrichment data revealed that Heat shock protein A2 was intimately involved in the tumorigenesis and progression of pancreatic cancer. CONCLUSION: Heat shock protein A2 is upregulated in pancreatic cancer and is closely associated with tumor immunity and aggressive progression.


Subject(s)
HSP70 Heat-Shock Proteins , Pancreatic Neoplasms , Carcinogenesis/genetics , Computational Biology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/immunology , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
15.
Epigenetics ; 17(12): 1738-1752, 2022 12.
Article in English | MEDLINE | ID: mdl-35404184

ABSTRACT

Pancreatic cancer (PC) is one of the most fatal cancers with a very poor prognosis. Here, we found that N6-methyladenosine (m6A) RNA demethylase fat mass and obesity-related protein (FTO) promote the growth, migration and invasion of PC. FTO expression level is increased in human PC and is associated with poor prognosis of PC patients. Knockdown of FTO increases m6A methylation of TFPI-2 mRNA in PC cells, thereby increasing mRNA stability via the m6A reader YTHDF1, resulting in up-regulation of TFPI-2 expression, and inhibits PC proliferation, colony formation, sphere formation, migration and invasion in vitro, as well as tumour growth in vivo. Rescue assay further confirms that FTO facilitates cancer progression by reducing the expression of TFPI-2. Mechanistically, FTO promotes the progression of PC at least partially through reducing m6A/YTHDF1 mediated TFPI-2 mRNA stability. Our findings reveal that FTO, as an m6A demethylase, plays a critical role in promoting PC growth, migration and invasion, suggesting that FTO may be a potential therapeutic target for treating PC.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Pancreatic Neoplasms , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , RNA/metabolism , Adenosine/metabolism , DNA Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
16.
Rev. Assoc. Med. Bras. (1992) ; 68(4): 470-475, Apr. 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1376146

ABSTRACT

SUMMARY OBJECTIVE: Heat shock protein A2 has been reported to be tightly associated with tumorigenesis and tumor progression. This study aimed to determine the oncogenic and immunological roles of Heat shock protein A2 in pancreatic cancer by bioinformatics. METHODS: Expression of Heat shock protein A2 in tumorous and normal specimens of pancreatic cancer was analyzed using the Cancer Genome Atlas and the Cancer Genome Atlas + Genotype-Tissue Expression data sets, respectively. Relationships of Heat shock protein A2 expression with immune infiltrates in pancreatic cancer were assessed. Heat shock protein A2-associated coexpressed genes in pancreatic cancer were obtained, followed by the implementation of enrichment analysis. RESULTS: The data demonstrated that Heat shock protein A2 was significantly overexpressed in tumorous samples compared with normal samples. Heat shock protein A2 expression was remarkably positively interrelated with CD8+ T cell, neutrophil, dendritic cell, and macrophage, but not with CD4+ T and B cells. Heat shock protein A2 expression was markedly positively relevant to both cancer-associated fibroblast and endothelial cell. Enrichment data revealed that Heat shock protein A2 was intimately involved in the tumorigenesis and progression of pancreatic cancer. CONCLUSION: Heat shock protein A2 is upregulated in pancreatic cancer and is closely associated with tumor immunity and aggressive progression.

20.
Int J Phytoremediation ; 24(7): 744-752, 2022.
Article in English | MEDLINE | ID: mdl-34493098

ABSTRACT

Sedum alfredii and Sedum plumbizincicola typically have high heavy metal (such as Zn and Cd) accumulation capacities with fast growth rates and relatively high Pb tolerance in contaminated soils. We compared the accumulation characteristics of heavy metals in Sedum species through meta-analysis. Furthermore, we analyzed the effects of soil organic matter (SOM) and soil pH on Cd, Pb and Zn accumulation by S. alfredii and S. plumbizincicola and the correlation between various metals. Results showed that the accumulations of Cd and Zn in shoots were higher than that of roots, but Pb accumulated in roots more than shoots. Moreover, there is a significant positive correlation between the accumulation of Zn and Cd in shoots. We found that the heavy metal accumulation rate in shoots was higher with lower soil pH. Sedum species had the highest Cd adsorption capacity in 20-30 g/kg SOM and the highest Zn adsorption capacity in SOM less than 20 g/kg. The accumulation rate of Cd in shoots of S. plumbizincicola was increased with exposure time, while the accumulation rate of Zn was slightly decreased.


S. alfredii and S. plumbizincicola are two common Cd and Zn hyperaccumulators. We systematically compared the accumulation characteristics of heavy metals in Sedum plants and the effects of soil organic matter and pH on the accumulation of Cd, Pb and Zn in S. alfredii and S. plumbizincicola through meta-analysis. This provides certain theoretical knowledge for the application of sedum plants to the phytoremediation of heavy metal contaminated soils.


Subject(s)
Metals, Heavy , Sedum , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...