Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
2.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38152980

ABSTRACT

Polygenic risk scores (PRSs) have emerged as promising tools for the prediction of human diseases and complex traits in disease genome-wide association studies (GWAS). Applying PRSs to pharmacogenomics (PGx) studies has begun to show great potential for improving patient stratification and drug response prediction. However, there are unique challenges that arise when applying PRSs to PGx GWAS beyond those typically encountered in disease GWAS (e.g. Eurocentric or trans-ethnic bias). These challenges include: (i) the lack of knowledge about whether PGx or disease GWAS/variants should be used in the base cohort (BC); (ii) the small sample sizes in PGx GWAS with corresponding low power and (iii) the more complex PRS statistical modeling required for handling both prognostic and predictive effects simultaneously. To gain insights in this landscape about the general trends, challenges and possible solutions, we first conduct a systematic review of both PRS applications and PRS method development in PGx GWAS. To further address the challenges, we propose (i) a novel PRS application strategy by leveraging both PGx and disease GWAS summary statistics in the BC for PRS construction and (ii) a new Bayesian method (PRS-PGx-Bayesx) to reduce Eurocentric or cross-population PRS prediction bias. Extensive simulations are conducted to demonstrate their advantages over existing PRS methods applied in PGx GWAS. Our systematic review and methodology research work not only highlights current gaps and key considerations while applying PRS methods to PGx GWAS, but also provides possible solutions for better PGx PRS applications and future research.


Subject(s)
Genetic Risk Score , Genome-Wide Association Study , Humans , Bayes Theorem , Genetic Predisposition to Disease , Multifactorial Inheritance , Pharmacogenetics , Systematic Reviews as Topic
3.
Stat Methods Med Res ; 32(10): 1961-1972, 2023 10.
Article in English | MEDLINE | ID: mdl-37519295

ABSTRACT

In the era of precision medicine, many biomarkers have been discovered to be associated with drug efficacy and safety responses, which can be used for patient stratification and drug response prediction. Due to the small sample size and limited power of randomized clinical studies, meta-analysis is usually conducted to aggregate all available studies to maximize the power for identifying prognostic and predictive biomarkers. However, it is often challenging to find an independent study to replicate the discoveries from the meta-analysis (e.g. meta-analysis of pharmacogenomics genome-wide association studies (PGx GWAS)), which seriously limits the potential impacts of the discovered biomarkers. To overcome this challenge, we develop a novel statistical framework, MAJAR (meta-analysis of joint effect associations for biomarker replicability assessment), to jointly test prognostic and predictive effects and assess the replicability of identified biomarkers by implementing an enhanced expectation-maximization algorithm and calculating their posterior-probability-of-replicabilities and Bayesian false discovery rates (Fdr). Extensive simulation studies were conducted to compare the performance of MAJAR and existing methods in terms of Fdr, power, and computational efficiency. The simulation results showed improved statistical power with well-controlled Fdr of MAJAR over existing methods and robustness to outliers under different data generation processes. We further demonstrated the advantages of MAJAR over existing methods by applying MAJAR to the PGx GWAS summary statistics data from a large cardiovascular randomized clinical trial. Compared to testing main effects only, MAJAR identified 12 novel variants associated with the treatment-related low-density lipoprotein cholesterol reduction from baseline.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Phenotype , Bayes Theorem , Biomarkers , Randomized Controlled Trials as Topic
4.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37200155

ABSTRACT

Polygenic risk score (PRS) has been recently developed for predicting complex traits and drug responses. It remains unknown whether multi-trait PRS (mtPRS) methods, by integrating information from multiple genetically correlated traits, can improve prediction accuracy and power for PRS analysis compared with single-trait PRS (stPRS) methods. In this paper, we first review commonly used mtPRS methods and find that they do not directly model the underlying genetic correlations among traits, which has been shown to be useful in guiding multi-trait association analysis in the literature. To overcome this limitation, we propose a mtPRS-PCA method to combine PRSs from multiple traits with weights obtained from performing principal component analysis (PCA) on the genetic correlation matrix. To accommodate various genetic architectures covering different effect directions, signal sparseness and across-trait correlation structures, we further propose an omnibus mtPRS method (mtPRS-O) by combining P values from mtPRS-PCA, mtPRS-ML (mtPRS based on machine learning) and stPRSs using Cauchy Combination Test. Our extensive simulation studies show that mtPRS-PCA outperforms other mtPRS methods in both disease and pharmacogenomics (PGx) genome-wide association studies (GWAS) contexts when traits are similarly correlated, with dense signal effects and in similar effect directions, and mtPRS-O is consistently superior to most other methods due to its robustness under various genetic architectures. We further apply mtPRS-PCA, mtPRS-O and other methods to PGx GWAS data from a randomized clinical trial in the cardiovascular domain and demonstrate performance improvement of mtPRS-PCA in both prediction accuracy and patient stratification as well as the robustness of mtPRS-O in PRS association test.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Genome-Wide Association Study/methods , Pharmacogenetics , Polymorphism, Single Nucleotide , Phenotype , Genetic Predisposition to Disease
5.
Front Public Health ; 11: 1124915, 2023.
Article in English | MEDLINE | ID: mdl-37213603

ABSTRACT

Background: Lower psychological wellbeing is associated with poor outcomes in a variety of diseases and healthy populations. However, no study has investigated whether psychological wellbeing is associated with the outcomes of COVID-19. This study aimed to determine whether individuals with lower psychological wellbeing are more at risk for poor outcomes of COVID-19. Methods: Data were from the Survey of Health, Aging, and Retirement in Europe (SHARE) in 2017 and SHARE's two COVID-19 surveys in June-September 2020 and June-August 2021. Psychological wellbeing was measured using the CASP-12 scale in 2017. The associations of the CASP-12 score with COVID-19 hospitalization and mortality were assessed using logistic models adjusted for age, sex, body mass index, smoking, physical activity, household income, education level, and chronic conditions. Sensitivity analyses were performed by imputing missing data or excluding cases whose diagnosis of COVID-19 was solely based on symptoms. A confirmatory analysis was conducted using data from the English Longitudinal Study of Aging (ELSA). Data analysis took place in October 2022. Results: In total, 3,886 individuals of 50 years of age or older with COVID-19 were included from 25 European countries and Israel, with 580 hospitalized (14.9%) and 100 deaths (2.6%). Compared with individuals in tertile 3 (highest) of the CASP-12 score, the adjusted odds ratios (ORs) of COVID-19 hospitalization were 1.81 (95% CI, 1.41-2.31) for those in tertile 1 (lowest) and 1.37 (95% CI, 1.07-1.75) for those in tertile 2. As for COVID-19 mortality, the adjusted ORs were 2.05 (95% CI, 1.12-3.77) for tertile 1 and 1.78 (95% CI, 0.98-3.23) for tertile 2, compared with tertile 3. The results were relatively robust to missing data or the exclusion of cases solely based on symptoms. This inverse association of the CASP-12 score with COVID-19 hospitalization risk was also observed in ELSA. Conclusion: This study shows that lower psychological wellbeing is independently associated with increased risks of COVID-19 hospitalization and mortality in European adults aged 50 years or older. Further study is needed to validate these associations in recent and future waves of the COVID-19 pandemic and other populations.


Subject(s)
COVID-19 , Humans , Adult , Middle Aged , COVID-19/epidemiology , Longitudinal Studies , Israel/epidemiology , Pandemics , Risk Factors , Hospitalization , Europe/epidemiology
6.
Front Artif Intell ; 6: 1123285, 2023.
Article in English | MEDLINE | ID: mdl-37077235

ABSTRACT

COVID-19 is an unprecedented global pandemic with a serious negative impact on virtually every part of the world. Although much progress has been made in preventing and treating the disease, much remains to be learned about how best to treat the disease while considering patient and disease characteristics. This paper reports a case study of combinatorial treatment selection for COVID-19 based on real-world data from a large hospital in Southern China. In this observational study, 417 confirmed COVID-19 patients were treated with various combinations of drugs and followed for four weeks after discharge (or until death). Treatment failure is defined as death during hospitalization or recurrence of COVID-19 within four weeks of discharge. Using a virtual multiple matching method to adjust for confounding, we estimate and compare the failure rates of different combinatorial treatments, both in the whole study population and in subpopulations defined by baseline characteristics. Our analysis reveals that treatment effects are substantial and heterogeneous, and that the optimal combinatorial treatment may depend on baseline age, systolic blood pressure, and c-reactive protein level. Using these three variables to stratify the study population leads to a stratified treatment strategy that involves several different combinations of drugs (for patients in different strata). Our findings are exploratory and require further validation.

7.
Cell Death Dis ; 14(3): 216, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977674

ABSTRACT

Reactive oxygen species (ROS) can induce oxidative injury and are generally regarded as toxic byproducts, although they are increasingly recognized for their signaling functions. Increased ROS often accompanies liver regeneration (LR) after liver injuries, however, their role in LR and the underlying mechanism remains unclear. Here, by employing a mouse LR model of partial hepatectomy (PHx), we found that PHx induced rapid increases of mitochondrial hydrogen peroxide (H2O2) and intracellular H2O2 at an early stage, using a mitochondria-specific probe. Scavenging mitochondrial H2O2 in mice with liver-specific overexpression of mitochondria-targeted catalase (mCAT) decreased intracellular H2O2 and compromised LR, while NADPH oxidases (NOXs) inhibition did not affect intracellular H2O2 or LR, indicating that mitochondria-derived H2O2 played an essential role in LR after PHx. Furthermore, pharmacological activation of FoxO3a impaired the H2O2-triggered LR, while liver-specific knockdown of FoxO3a by CRISPR-Cas9 technology almost abolished the inhibition of LR by overexpression of mCAT, demonstrating that FoxO3a signaling pathway mediated mitochondria-derived H2O2 triggered LR after PHx. Our findings uncover the beneficial roles of mitochondrial H2O2 and the redox-regulated underlying mechanisms during LR, which shed light on potential therapeutic interventions for LR-related liver injury. Importantly, these findings also indicate that improper antioxidative intervention might impair LR and delay the recovery of LR-related diseases in clinics.


Subject(s)
Hepatectomy , Liver Regeneration , Animals , Mice , Disease Models, Animal , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
8.
J Clin Med ; 12(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615161

ABSTRACT

Little is known about the treatment of patients with hepatitis B surface antigen (HBsAg) recurrence after being clinically cured by peginterferon alpha(peg-IFN-α)-based regimens. This study aimed to investigate the efficacy and safety of peg-IFNα-2b in re-treating patients with HBsAg recurrence after stopping peg-IFN α-based regimens. In this two-center, prospective observational study, 33 patients with HBsAg recurrence after stopping peg-IFN α-based regimens were enrolled and re-treated with an individualized course of peg-IFN α-2b. The hepatitis B virus (HBV) vaccine could be injected immediately after HBsAg clearance, according to patients' willingness. All patients were monitored and followed-up for 48 weeks after peg-IFN α-2b re-treatment stop. The primary endpoint was HBsAg clearance at the end of follow-up. At baseline, all patients had HBsAg levels of <10 IU/mL and undetectable HBV DNA, with the median HBsAg level of 1.66 (0.56−2.87) IU/mL. After a median of 24 (24−30) weeks of peg-IFN α-2b re-treatment, 87.9% (29/33) of the patients achieved HBsAg clearance again and 66.7% (22/33) of the patients achieved HBsAg seroconversion. At the end of follow-up, the HBsAg clearance and HBsAg seroconversion rates decreased to 78.8% (26/33) and 51.5% (17/33), respectively. Furthermore, 88.9% (16/18) of the patients with HBsAg clearance benefited from receiving the HBV vaccine therapy. Generally, both peg-IFN α-2b and HBV vaccine therapy were well tolerated. A high functional cure rate can be achieved by a short-course of peg-IFN α-2b re-treatment in patients with HBsAg recurrence after stopping peg-IFN α-based regimens. Furthermore, injecting HBV vaccine is beneficial after HBsAg clearance.

9.
Front Nutr ; 9: 838091, 2022.
Article in English | MEDLINE | ID: mdl-36451744

ABSTRACT

Objectives: Drug treatment of metabolic associated fatty liver disease (MAFLD) remains lacking. This study analyzes the efficacy and mechanism underlying intermittent fasting combined with lipidomics. Methods: Thirty-two male rats were randomly divided into three groups: Normal group, administered a standard diet; MAFLD group, administered a 60% high-fat diet; time-restricted feeding (TRF) group, administered a 60% high-fat diet. Eating was allowed for 6 h per day (16:00-22:00). After 15 weeks, liver lipidomics and other indicators were compared. Results: A total of 1,062 metabolites were detected. Compared with the Normal group, the weight, body fat ratio, aspartate aminotransferase, total cholesterol, low-density cholesterol, fasting blood glucose, uric acid, and levels of 317 lipids including triglycerides (TG) (17:0-18:1-20:4) were upregulated, whereas the levels of 265 lipids including phosphatidyl ethanolamine (PE) (17:0-20:5) were downregulated in the MAFLD group (P < 0.05). Compared with the MAFLD group, the weight, body fat ratio, daily food intake, and levels of 253 lipids including TG (17:0-18:1-22:5) were lower in the TRF group. Furthermore, the levels of 82 lipids including phosphatidylcholine (PC) (20:4-22:6) were upregulated in the TRF group (P < 0.05), while serum TG level was increased; however, the increase was not significant (P > 0.05). Enrichment analysis of differential metabolites showed that the pathways associated with the observed changes mainly included metabolic pathways, regulation of lipolysis in adipocytes, and fat digestion and absorption, while reverse-transcription polymerase chain reaction showed that TRF improved the abnormal expression of FAS and PPARα genes in the MAFLD group (P < 0.05). Conclusion: Our results suggest that 6 h of TRF can improve MAFLD via reducing food intake by 13% and improving the expression of genes in the PPARα/FAS pathway, thereby providing insights into the prevention and treatment of MAFLD.

11.
Nat Commun ; 13(1): 5278, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36075892

ABSTRACT

Polygenic risk scores (PRS) have been successfully developed for the prediction of human diseases and complex traits in the past years. For drug response prediction in randomized clinical trials, a common practice is to apply PRS built from a disease genome-wide association study (GWAS) directly to a corresponding pharmacogenomics (PGx) setting. Here, we show that such an approach relies on stringent assumptions about the prognostic and predictive effects of the selected genetic variants. We propose a shift from disease PRS to PGx PRS approaches by simultaneously modeling both the prognostic and predictive effects and further make this shift possible by developing a series of PRS-PGx methods, including a novel Bayesian regression approach (PRS-PGx-Bayes). Simulation studies show that PRS-PGx methods generally outperform the disease PRS methods and PRS-PGx-Bayes is superior to all other PRS-PGx methods. We further apply the PRS-PGx methods to PGx GWAS data from a large cardiovascular randomized clinical trial (IMPROVE-IT) to predict treatment related LDL cholesterol reduction. The results demonstrate substantial improvement of PRS-PGx-Bayes in both prediction accuracy and the capability of capturing the treatment-specific predictive effects while compared with the disease PRS approaches.


Subject(s)
Genome-Wide Association Study , Pharmacogenetics , Bayes Theorem , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide , Risk Factors
12.
World J Clin Cases ; 10(23): 8360-8366, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36159534

ABSTRACT

BACKGROUND: Relapsing polychondritis is a rare multisystem autoimmune disease that mainly involves systemic cartilage and proteoglycan-rich tissues. If the larynx and trachea are involved, the patient's condition deteriorates rapidly. When relapsing polychondritis becomes more advanced, the airways collapse and treatment is difficult, rendering a poor prognosis. Therefore, the diagnosis method, treatment strategy and prognosis of relapsing polychondritis with larynx and trachea involvement need to be elucidated to improve clinicians' awareness of the disease. CASE SUMMARY: A man and a woman were admitted because of breathlessness. Relapsing polychondritis was diagnosed after a series of accessory examinations. They were both treated with glucocorticoids and immunosuppressants, and underwent tracheotomy as their breathing difficulties could not be relieved by the medication. CONCLUSION: The two cases highlight the importance of the timely diagnosis, full evaluation and initiating individualized treatment of relapsing polychondritis with larynx and trachea involvement. Laryngoscopy, bronchoscopy and pathological examination are helpful in diagnosis of this disease.

13.
PLoS Negl Trop Dis ; 16(1): e0010090, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35041675

ABSTRACT

BACKGROUND: This research aimed to explore the association between the RIG-I-like receptor (RIG-I and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this context, we explored the influence of gene methylation and polymorphism on EV71-HFMD. METHODOLOGY/PRINCIPAL FINDINGS: 60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60 severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abundance. DDX58 expression levels were significantly lower in mild patients than in healthy controls and lower in severe patients than in mild patients. Binary logistic regression analysis revealed statistically significant differences in the genotype frequencies of DDX58 rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins displayed correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3 and DDX58. CONCLUSIONS/SIGNIFICANCE: DDX58 expression and promoter methylation were associated with EV71 infection progression, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is worth further attention.


Subject(s)
DEAD Box Protein 58/genetics , DNA Methylation/genetics , Hand, Foot and Mouth Disease/pathology , Interferon-Induced Helicase, IFIH1/genetics , Receptors, Immunologic/genetics , Child , Child, Preschool , CpG Islands/genetics , DEAD Box Protein 58/metabolism , Enterovirus A, Human , Female , Genetic Predisposition to Disease/genetics , Hand, Foot and Mouth Disease/virology , Humans , Infant , Interferon-Induced Helicase, IFIH1/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Receptors, Immunologic/metabolism , Severity of Illness Index
14.
Ther Clin Risk Manag ; 16: 1023-1029, 2020.
Article in English | MEDLINE | ID: mdl-33122910

ABSTRACT

INTRODUCTION: Severe hand, foot, and mouth disease (HFMD) may lead to serious complications, which cause child mortality during outbreaks. The aim of this study was to determine whether neutrophil-to-lymphocyte ratio (NLR) can predict death risk in severe HFMD. METHODS: Medical records for 664 severe HFMD patients were retrospectively examined, and NLR was calculated from blood counts. Youden's index was calculated to determine the optimal NLR cutoff. Uni- and multivariate logistic regression were used to determine death risk factors associated with severe HFMD. RESULTS: An NLR cutoff value of 2.01 and 2.50 respectively predicted mortality among all 664 severe HFMD and 137 critical HFMD. Among all 664 patients, the multivariate model identified the following as independently associated with death risk: high fever (OR 3.342, 95% CI 1.736-6.432), EV71 infection (OR 3.200, 95% CI 1.529-6.698), fasting glucose (OR 37.343, 95% CI 18.616-74.909), and NLR (>2.01) (OR 2.142, 95% CI 1.125-4.079). Among 137 critical HFMD, EV71 infection (OR 3.441, 95% CI 1.132-10.462), fasting glucose (OR 14.173, 95% CI 4.920-40.827), and NLR (>2.50) (OR 4.166, 95% CI 1.570-11.051) were associated with death risk. CONCLUSION: In conclusion, NLR (>2.01) in severe HFMD and NLR (>2.50) in critical HFMD patients may be associated with increased death risk.

15.
Toxicol Appl Pharmacol ; 407: 115238, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32950532

ABSTRACT

Menthol is widely used in tobacco products. This study compared the effects of menthol on human bronchial epithelium using submerged cultures, a VITROCELL® cloud chamber that provides air liquid interface (ALI) exposure without solvents or heating, and a Cultex ALI system that delivers aerosol equivalent to that inhaled during vaping. In submerged culture, menthol significantly increased calcium influx and mitochondrial reactive oxygen species (ROS) via the TRPM8 receptor, responses that were inhibited by a TRPM8 antagonist. VITROCELL® cloud chamber exposure of BEAS-2B monolayers increased mitochondrial protein oxidation, expression of the antioxidant enzyme SOD2, activation of NF-κB, and secretion of inflammatory cytokines (IL-6 and IL-8). Proteomics data collected following ALI exposure of 3D EpiAirway tissue in the Cultex showed upregulation of NRF-2-mediated oxidative stress, oxidative phosphorylation, and IL-8 signaling. Across the three platforms, menthol adversely effected human bronchial epithelium in a manner that could lead to respiratory disease.


Subject(s)
Electronic Nicotine Delivery Systems , Menthol/adverse effects , Respiratory Tract Diseases/chemically induced , Aerosols , Antioxidants/metabolism , Calcium/metabolism , Cell Line , Cell Proliferation/drug effects , Cytokines/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Proteomics , Reactive Oxygen Species/metabolism , Respiratory Mucosa/drug effects , TRPM Cation Channels/biosynthesis , TRPM Cation Channels/drug effects
16.
J Med Virol ; 92(3): 271-278, 2020 03.
Article in English | MEDLINE | ID: mdl-31587312

ABSTRACT

Coxsackievirus A16 (CA16) remains the most common causative agent of hand, foot, and mouth disease (HFMD), and is related to high incidence and critical complications. Vitamin D receptor (VDR) activity might affect the outcome of CA16 infection. Our case-control research aims to evaluate the relationship between VDR polymorphisms in the gene encoding and susceptibility to and severity of HFMD due to CA16. Three single-nucleotide polymorphisms (SNPs) of VDR gene were selected according to functional prediction and linkage disequilibrium, and were examined utilizing the SNPscan method to identify possible associations with HFMD caused by CA16. A significant relationship was found in the HFMD cases of polymorphism rs11574129 (GA vs GG: odds ratio (OR) = 0.068, 95% confidence interval (CI) = 0.007-0.693, P = .023; GA + AA vs GG: OR = 0.322, 95%CI = 0.106-0.984, P = .047), and vitamin D levels in genotype AA were significantly higher than those in genotype GG (P < .05). These results suggest that VDR rs11574129 may influence genetic susceptibility to CA16-associated HFMD.


Subject(s)
Genetic Predisposition to Disease , Hand, Foot and Mouth Disease/genetics , Hand, Foot and Mouth Disease/metabolism , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Vitamin D/blood , Case-Control Studies , Child, Preschool , Enterovirus A, Human , Female , Genotype , Hand, Foot and Mouth Disease/virology , Humans , Infant , Male
17.
J Cancer ; 9(22): 4187-4196, 2018.
Article in English | MEDLINE | ID: mdl-30519319

ABSTRACT

Hepatocellular carcinoma (HCC), accounting for approximately 90% of liver cancer, is the most lethal malignant tumors in the world. Large amount of evidence indicate that microRNAs (miRNAs) contribute to the tumorigenesis and progression of HCC. Among them, miR-376c-3p was recently identified as a tumor-related miRNA and is up-regulated in HBV-related HCC. But, the clinical significance of miR-376c-3p and its biological function in HCC progression are still unclear. Here, we confirmed that miR-376c-3p expression level in HCC was markedly higher than that in noncancerous tissues. Up-regulation of miR-376c-3p was detected in four different HCC cell lines. High miR-376c-3p expression correlated with poor prognostic features, such as large tumor size and venous infiltration. Follow-up data indicated that high miR-376c-3p level evidently correlated with poor clinical outcomes of HCC patients. Moreover, knockdown of miR-376c-3p repressed HCC cell growth, migration and invasion in vitro. miR-376c-3p overexpression facilitated these malignant behaviors of Bel-7402 cells. Mechanistically, miR-376c-3p posttranscriptionally repressed ARID2 expression by directly interacting with its 3'-UTR. Furthermore, an obvious negative correlation between miR-376c-3p and ARID2 mRNA expression in HCC tissues was confirmed. Notably, miR-376c-3p knockdown suppressed HCC growth and metastasis in nude mice. Gain-of-function experiments showed that ARID2 inhibited cell growth and mobility of Hep3B cells. Subsequently, ARID2 knockdown rescued miR-376c-3p silencing attenuated Hep3B cell proliferation and mobility. Our results suggest that miR-376c-3p exerts an oncogenic role in HCC progression.

18.
PLoS Negl Trop Dis ; 11(9): e0005899, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28892475

ABSTRACT

BACKGROUND AND AIMS: Enterovirus 71 (EV71) has caused great morbidity, mortality, and use of health service in children younger than five years in China. Vaccines against EV71 have been proved effective and safe by recent phase 3 trials and are now available in China. The purpose of this study was to evaluate the health impact and cost-effectiveness of a national EV71 vaccination program in China. METHODS: Using Microsoft Excel, a decision model was built to calculate the net clinical and economic outcomes of EV71 vaccination compared with no EV71 vaccination in a birth cohort of 1,000,000 Chinese children followed for five years. Model parameters came from published epidemiology, clinical and cost data. RESULTS: In the base-case, vaccination would annually avert 37,872 cases of hand, foot and mouth disease (HFMD), 2,629 herpangina cases, 72,900 outpatient visits, 6,363 admissions to hospital, 29 deaths, and 945 disability adjusted life years. The break-even price of the vaccine was $5.2/dose. When the price was less than $8.3 or $14.6/dose, the vaccination program would be highly cost-effective or cost-effective, respectively (incremental cost-effectiveness ratio less than or between one to three times China GDP per capita, respectively). In one-way sensitivity analyses, the HFMD incidence was the only influential parameter at the price of $5/dose. CONCLUSIONS: Within the price range of current routine vaccines paid by the government, a national EV71 vaccination program would be cost-saving or highly cost-effective to prevent EV71 related morbidity, mortality, and use of health service among children younger than five years in China. Policy makers should consider including EV71 vaccination as part of China's routine childhood immunization schedule.


Subject(s)
Enterovirus A, Human/immunology , Hand, Foot and Mouth Disease/prevention & control , Immunization Programs/economics , National Health Programs/economics , Viral Vaccines/administration & dosage , Child, Preschool , China/epidemiology , Cost-Benefit Analysis , Enterovirus A, Human/isolation & purification , Female , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/immunology , Humans , Immunization Programs/legislation & jurisprudence , Immunization Schedule , Infant , Male , Quality-Adjusted Life Years , Vaccination/economics
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(7): 953-958, 2017 Jul.
Article in Chinese | MEDLINE | ID: mdl-28712404

ABSTRACT

Objective To investigate whether the polymorphisms of TLR7/MyD88 signaling pathway is associated with the susceptibility to and severity of hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) in children. Methods We collected 180 EV71 HFMD cases and 201 healthy controls from both the Second Affiliated Hospital of Xi'an Jiaotong University and Xi'an Children's Hospital. The genotypes including rs3853839, rs179010 of TLR7, and rs7744 of MyD88 were detected in the 381 samples by SNPscan kit. Results The susceptibility risk (OR=2.343, 95%CI:1.516-3.621) and severity risk (OR=1.939, 95%CI: 1.064-3.521) of TLR7 rs3853839 allele C significantly increased in the male children with EV71 HFMD. Also, the susceptibility risk (OR=1.701, 95%CI: 1.142-2.535) and severity risk (OR=1.852, 95%CI: 1.038-3.305) of TLR7 rs179010 allele T significantly increased in the male children with EV71 HFMD. But there was no significant difference in the distribution of TLR7 rs179010 and rs3853839 genes between female children with EV71 HFMD and female controls. There was no correlation between the genetic polymorphisms of MyD88 rs7744 and the susceptibility to and severity of EV71 HFMD in the children. Conclusion Polymorphisms of TLR7 rs3853839 and rs179010 are correlated to the susceptibility to and severity of EV71 HFMD in male children.


Subject(s)
Enterovirus A, Human , Genetic Predisposition to Disease , Hand, Foot and Mouth Disease/genetics , Polymorphism, Genetic , Toll-Like Receptor 7/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Myeloid Differentiation Factor 88/genetics
20.
World J Gastroenterol ; 23(7): 1203-1214, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28275300

ABSTRACT

AIM: To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS: HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on α-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS: CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION: CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.


Subject(s)
Antioxidants/chemistry , Caffeic Acids/therapeutic use , Hepatic Stellate Cells/drug effects , MAP Kinase Signaling System , NF-E2-Related Factor 2/metabolism , Phenylethyl Alcohol/analogs & derivatives , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Flow Cytometry , Hepatic Stellate Cells/metabolism , Immunoenzyme Techniques , Microscopy, Fluorescence , Oxidative Stress , Phenol , Phenylethyl Alcohol/therapeutic use , Protein Transport , Rats , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...