Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
Adv Sci (Weinh) ; : e2401919, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976567

ABSTRACT

Renal cell carcinoma (RCC) is a substantial pathology of the urinary system with a growing prevalence rate. However, current clinical methods have limitations for managing RCC due to the heterogeneity manifestations of the disease. Metabolic analyses are regarded as a preferred noninvasive approach in clinics, which can substantially benefit the characterization of RCC. This study constructs a nanoparticle-enhanced laser desorption ionization mass spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors (n = 456) and healthy controls (n = 200). The classification models yielded the areas under curves (AUC) of 0.938 (95% confidence interval (CI), 0.884-0.967) for distinguishing renal tumors from healthy controls, 0.850 for differentiating malignant from benign tumors (95% CI, 0.821-0.915), and 0.925-0.932 for classifying subtypes of RCC (95% CI, 0.821-0.915). For the early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and specificity of 91.3% in the test set is achieved. Metabolic biomarkers are identified as the potential indicator for subtype diagnosis (p < 0.05). To validate the prognostic performance, a predictive model for RCC participants and achieve the prediction of disease (p = 0.003) is constructed. The study provides a promising prospect for applying metabolic analytical tools for RCC characterization.

2.
Sci Total Environ ; : 174816, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019287

ABSTRACT

Utilizing the framework of environmental health risk assessment and healing, the article reviews the effectiveness and potential of green space systems in mitigating the impact of high temperatures, promoting mental health, and improving the risk characteristics of high-temperature heat waves. We utilized CiteSpace software to conduct a time-zone analysis of the relationship between heatwaves, green spaces, and health using clustered data from 2001 to 2023. This study evaluates the role of green space systems in mitigating high temperatures and enhancing mental health within the environmental health risk assessment framework. Using CiteSpace software, we analyzed literature from 2001 to 2023, focusing on the interactions among heatwaves, green spaces, and health. Our results indicate that most existing research concentrates on hazard identification, with insufficient exploration of the dose-response relationships between green spaces and temperature reduction. Quantitative studies on green space design and spatial optimization are scarce, and guidance on effective configurations remains limited. Additionally, the health impacts of heatwaves vary by region, with a noticeable imbalance in research focus; Asia and Africa, in particular, are underrepresented in studies addressing heatwave effects. We conclude that effective mitigation strategies require: (1) a comprehensive environmental health risk assessment framework that integrates advanced methods like big data analysis and geospatial simulations to improve green space planning and design; (2) further theoretical exploration into the mechanisms by which green spaces regulate temperature and mental health, including detailed analysis of spatiotemporal patterns and the functional optimization of green space structures; and (3) the development of robust parameterized design guidance based on specific therapeutic dosages (green space stimulus) to optimize configurations and enhance the effectiveness of green spaces in mitigating adverse mental health impacts from deteriorating thermal environments. Future research should prioritize underrepresented regions, focusing on exposure levels, dose-response relationships, and high-temperature warning systems while fostering multidisciplinary collaboration to develop effective urban planning and climate adaptation strategies.

3.
Opt Express ; 32(11): 18527-18538, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859006

ABSTRACT

Dynamic range (DR) is a pivotal characteristic of imaging systems. Current frame-based cameras struggle to achieve high dynamic range imaging due to the conflict between globally uniform exposure and spatially variant scene illumination. In this paper, we propose AsynHDR, a pixel-asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging and the unique event-generating mechanism of dynamic vision sensors (DVS). Our proposed AsynHDR system integrates the DVS with a set of LCD panels. The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams. The HDR image is subsequently decoded from the event streams through our temporal-weighted algorithm. Experiments under the standard test platform and several challenging scenes have verified the feasibility of the system in HDR imaging tasks.

4.
Adv Mater ; : e2404968, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897182

ABSTRACT

Color-selective photodetectors (PDs) play an indispensable role in spectral recognition, image sensing, and other fields. Nevertheless, complex filters and delicate optical paths in such devices significantly increase their complexity and size, which subsequently impede their integration in smart optoelectronic chips for universal applications. This work demonstrates the successful fabrication of filter-less color-selective perovskite PDs by integrating three perovskite units with different photoresponse on a single chip. The variation in photoresponse is attributed to different quantities of SnO2 nanoparticles, synthesized through controlled ultrasonic treatment on the surface of the electron transportation layer SnS2, which selectively absorb short-wavelength light, thus increasing the relative transmittance of long-wavelength light and enhancing the photoresponse of the units to long wavelengths. By integrating any two units and deriving the formula for the wavelength to the responsivity ratio, a wavelength sensor is developed which can accurately identify incident light in the range of 400-700 nm with a minimum error <3 nm. Furthermore, the device integrating three units with different photoresponse can identify red, green and blue in polychromatic light to achieve color imaging with a relative error <6%. This work provides valuable insights into wavelength identification and color imaging of perovskite PDs.

5.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831142

ABSTRACT

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Subject(s)
Aquaculture , Bacteria , Denitrification , Microbiota , Nitrogen , Nitrous Oxide , Penaeidae , Ponds , Nitrogen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Ponds/microbiology , Animals , Penaeidae/microbiology , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Geologic Sediments/microbiology , Oxidation-Reduction , Ammonium Compounds/metabolism
6.
J Immunother Cancer ; 12(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862251

ABSTRACT

BACKGROUND: A combination of axitinib and immune checkpoint inhibitors (ICIs) demonstrated promising efficacy in the treatment of advanced renal cell carcinoma (RCC). This study aims to prospectively evaluate the safety, efficacy, and biomarkers of neoadjuvant toripalimab plus axitinib in non-metastatic clear cell RCC. METHODS: This is a single-institution, single-arm phase II clinical trial. Patients with non-metastatic biopsy-proven clear cell RCC (T2-T3N0-1M0) are enrolled. Patients will receive axitinib 5 mg twice daily combined with toripalimab 240 mg every 3 weeks (three cycles) for up to 12 weeks. Patients then will receive partial (PN) or radical nephrectomy (RN) after neoadjuvant therapy. The primary endpoint is objective response rate (ORR). Secondary endpoints include disease-free survival, safety, and perioperative complication rate. Predictive biomarkers are involved in exploratory analysis. RESULTS: A total of 20 patients were enrolled in the study, with 19 of them undergoing surgery. One patient declined surgery. The primary endpoint ORR was 45%. The posterior distribution of πORR had a mean of 0.44 (95% credible intervals: 0.24-0.64), meeting the predefined primary endpoint with an ORR of 32%. Tumor shrinkage was observed in 95% of patients prior to nephrectomy. Furthermore, four patients achieved a pathological complete response. Grade ≥3 adverse events occurred in 25% of patients, including hypertension, hyperglycemia, glutamic pyruvic transaminase/glutamic oxaloacetic transaminase (ALT/AST) increase, and proteinuria. Postoperatively, one grade 4a and eight grade 1-2 complications were noted. In comparison to patients with stable disease, responders exhibited significant differences in immune factors such as Arginase 1(ARG1), Melanoma antigen (MAGEs), Dendritic Cell (DC), TNF Superfamily Member 13 (TNFSF13), Apelin Receptor (APLNR), and C-C Motif Chemokine Ligand 3 Like 1 (CCL3-L1). The limitation of this trial was the small sample size. CONCLUSION: Neoadjuvant toripalimab combined with axitinib shows encouraging activity and acceptable toxicity in locally advanced clear cell RCC and warrants further study. TRIAL REGISTRATION NUMBER: clinicaltrials.gov, NCT04118855.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Axitinib , Carcinoma, Renal Cell , Kidney Neoplasms , Neoadjuvant Therapy , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Axitinib/therapeutic use , Axitinib/pharmacology , Male , Female , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Middle Aged , Neoadjuvant Therapy/methods , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adult , Prospective Studies , Nephrectomy/methods
7.
Fundam Res ; 4(1): 103-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38933835

ABSTRACT

Oceanic uptake and storage of anthropogenic CO2 (CANT) are regulated by ocean circulation and ventilation. To decipher the storage and redistribution of CANT in the western North Pacific, where a major CANT sink develops, we investigated the water column carbonate system, dissolved inorganic radiocarbon and ancillary parameters in May and August 2018, spanning the Kuroshio Extension (KE, 35-39 °N), Kuroshio Recirculation (KR, 27-35 °N) and subtropical (21-27 °N) zones. Water column CANT inventories were estimated to be 40.5 ± 1.1 mol m-2 in the KR zone and 37.2 ± 0.9 mol m-2 in the subtropical zone. In comparison with historical data obtained in 2005, relatively high rates of increase of the CANT inventory of 1.05 ± 0.20 and 1.03 ± 0.12 mol m-2 yr-1 in the recent decade were obtained in the KR and subtropical zones, respectively. Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration, storage, and redistribution of CANT in those two regions. In the KE zone, however, both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology, where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow. The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution, storage, and transport in the western North Pacific.

8.
Stem Cell Rev Rep ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848014

ABSTRACT

Non-coding RNA has many types which has rich functions and plays an important role in the study of basic molecular mechanisms. Many non-coding RNA have important implications for pluripotent stem cells and embryonic stem cells. It has been found to affect the self-renewal and osteogenesis of many types of stem cells. They have also been found to regulate stem cell proliferation and induct bone differentiation. Periodontal ligament stem cells are essential for the regeneration of periodontal tissue. In recent years, in the field of stomatology, studies have found that many non-coding RNA also have significant regulatory effects on the proliferation and differentiation of periodontal stem cells and may become potential therapeutic targets for many common periodontal diseases such as periodontitis, bone/tooth/soft tissue loss and orthodontic treatment. Therefore, we summarized the current research status of non-coding RNA in the field of molecular mechanism of periodontal ligament stem cells and prospected its future progress.

9.
Sensors (Basel) ; 24(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894445

ABSTRACT

The detection of seismic activity precursors as part of an alarm system will provide opportunities for minimization of the social and economic impact caused by earthquakes. It has long been envisaged, and a growing body of empirical evidence suggests that the Earth's electromagnetic field could contain precursors to seismic events. The ability to capture and monitor electromagnetic field activity has increased in the past years as more sensors and methodologies emerge. Missions such as Swarm have enabled researchers to access near-continuous observations of electromagnetic activity at second intervals, allowing for more detailed studies on weather and earthquakes. In this paper, we present an approach designed to detect anomalies in electromagnetic field data from Swarm satellites. This works towards developing a continuous and effective monitoring system of seismic activities based on SWARM measurements. We develop an enhanced form of a probabilistic model based on the Martingale theories that allow for testing the null hypothesis to indicate abnormal changes in electromagnetic field activity. We evaluate this enhanced approach in two experiments. Firstly, we perform a quantitative comparison on well-understood and popular benchmark datasets alongside the conventional approach. We find that the enhanced version produces more accurate anomaly detection overall. Secondly, we use three case studies of seismic activity (namely, earthquakes in Mexico, Greece, and Croatia) to assess our approach and the results show that our method can detect anomalous phenomena in the electromagnetic data.

10.
Small ; : e2401060, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726765

ABSTRACT

3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.05 MJ m-3) and three-point bending (3.82 MJ m-3), respectively. The reinforcement mechanisms are further investigated by experimental and simulation analyses, revealing a multi-scale synergy of fracture and fragmentation resistance through macro and micro-scale fiber bridging, and nano and molecular-scale hydrogel reinforcement. Also, the scaffolds acquire additional antibacterial and drug-loading capabilities from the hydrogel phase while maintaining favorable cell biocompatibility. Therefore, this study demonstrates a facile yet effective approach for preparing brittle-failure-free bioceramic scaffolds with enhanced biological functionalities, showcasing immense potential for BTE applications.

11.
Biochem Pharmacol ; 224: 116247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697311

ABSTRACT

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Renal Cell , Dual Specificity Phosphatase 6 , Glycolysis , Kidney Neoplasms , Proto-Oncogene Proteins c-akt , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Sunitinib/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Glycolysis/drug effects , Glycolysis/physiology , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Animals , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , Antineoplastic Agents/pharmacology , Mice , Mice, Nude , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male
12.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

13.
ACS Appl Mater Interfaces ; 16(15): 19254-19260, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568189

ABSTRACT

Recently, certain ferroelectric tunnel junctions (FTJs) exhibit non-volatile modulations on photoresponse as well as tunneling electroresistance (TER) effects related to ferroelectric polarization states. From the opposite perspective, the corresponding polarization states can be read by detecting the levels of the photocurrent. In this study, we fabricate a novel amorphous selenium (a-Se)/PbZr0.2Ti0.8O3 (PZT)/Nb-doped SrTiO3 (NSTO) heterojunction, which exhibits a high TER of 3 × 106. Unlike perovskite oxide FTJs with a limited ultraviolet response, the introduction of a narrow bandgap semiconductor (a-Se) enables self-powered photoresponse within the visible light range. The self-powered photoresponse characteristics can be significantly modulated by ferroelectric polarization. The photocurrent after writing polarization voltages of +4 and -5 V exhibits a 1200% increase. Furthermore, the photocurrent could be clearly distinguished after writing stepwise polarization voltages, and then a multistate information storage is designed with nondestructive readout capacity under light illumination. This work holds great significance in advancing the development of ferroelectric multistate photoelectronic memories with high storage density and expanding the design possibilities for FTJs.

14.
Nat Commun ; 15(1): 3237, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622154

ABSTRACT

Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.

15.
Phys Chem Chem Phys ; 26(16): 12379-12385, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38606541

ABSTRACT

In the realm of photoelectrochemical technology, the enhancement of photogenerated charge carrier separation is pivotal for the advancement of energy conversion performance. Carbon nitride (CN) is established as a photocatalytic material with significant potential and exhibits unique advantages in addressing the issue of rapid recombination of photogenerated carriers. This study utilized an efficient in situ doping method that combined Mo,W-doped BiVO4 (Mo,W:BVO) with silver-loaded CN (Ag@CN), yielding an all-solid-state Mo,W:BVO/Ag@CN heterostructure that effectively augments the separation efficiency of electron-hole pairs. Through the annealing process, Ag@CN was uniformly coated within the Mo,W:BVO thin film, significantly enlarging the interface contact area to enhance visible light absorption and photogenerated carrier movement. The results of the photoelectrochemical tests showed that the Mo,W:BVO/Ag@CN heterostructure had the highest photocurrent and charge transfer efficiency, which were 6.4 times and 3.6 times higher respectively than those of the unmodified Mo,W:BVO. Our research elucidates the interactions within all-solid-state Z-scheme heterojunctions, outlining strategic approaches for crafting innovative and superior photocatalytic systems.

16.
Eur J Nucl Med Mol Imaging ; 51(8): 2444-2457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38480552

ABSTRACT

PURPOSE: The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients. METHODS: Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient-derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6). RESULTS: We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC. CONCLUSION: The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Carcinoma, Renal Cell/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Kidney Neoplasms/diagnostic imaging , Female , Male , Fluorine Radioisotopes/chemistry , Animals , Mice , Middle Aged , Single-Domain Antibodies , Aged , Cell Line, Tumor , Tissue Distribution
17.
Chem Rev ; 124(7): 4479-4539, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38552165

ABSTRACT

Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.

19.
Restor Dent Endod ; 49(1): e8, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38449491

ABSTRACT

Objectives: The purpose of this study was to evaluate the effect of Dental Practicality Index (DPI) training using an online video on the treatment planning decisions and confidence level of dental undergraduates (DUs). Materials and Methods: Ninety-four DUs were shown 15 clinical case scenarios and asked to decide on treatment plans based on 4 treatment options. The most appropriate treatment plan had been decided by a consensus panel of experienced dentists. DUs then underwent DPI training using an online video. In a post-DPI-training test, DUs were shown the same clinical case scenarios and asked to assign the best treatment option. After 6 weeks, DUs were retested to assess their knowledge retention. In all 3 tests, DUs completed the confidence level scale questionnaire. Data were analyzed using the related-samples Wilcoxon signed rank test and the independent-samples Mann-Whitney U test with the level of significance set at p < 0.05. Results: DPI training significantly improved the mean scores of the DUs from 7.53 in the pre-DPI-training test to 9.01 in the post-DPI-training test (p < 0.001). After 6 weeks, the mean scores decreased marginally to 8.87 in the retention test (p = 0.563). DPI training increased their confidence level from 5.68 pre-DPI training to 7.09 post-DPI training. Conclusions: Training DUs using DPI with an online video improved their decision-making and confidence level in treatment planning.

20.
Small ; : e2401143, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534196

ABSTRACT

The regulation of the crystal structure of oxygen evolution cocatalyst (OEC) is a promising strategy for enhancing the photoelectrochemical efficiency of photoanodes. However, the prevailing regulating approach typically requires a multistep procedure, presenting a significant challenge for maintaining the structural integrity and performance of the photoanode. Herein, FeOOH with a local disordered structure is directly grown on a CdIn2S4 (CIS) photoanode via a simple and mild sonochemical approach. By modulating the localized supersaturation of Ni ions, ultrasonic cavitation induces Ni ions to participate in the nucleation and growth of FeOOH clusters to cause local disorder of FeOOH. Consequently, the local disordered FeOOH facilitates the exposure of additional active sites, boosting OER kinetics and extending charge carrier lifetimes. Finally, the optimal photoanode reaches 4.52 mA cm-2 at 1.23 VRHE, and the onset potential shifts negatively by 330 mV, exhibiting excellent performance compared with that of other metal sulfide-based photoelectrodes reported thus far. This work provides a mild and controllable sonochemical method for regulating the phase structure of OECs to construct high-performance photoanodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...