Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(9): 3412-3425, 2024.
Article in English | MEDLINE | ID: mdl-38993571

ABSTRACT

Chronic kidney disease (CKD) is linked to greater prevalence and rapid progression of calcific aortic valve disease (CAVD) characterized by valvular leaflet fibrosis and calcification. Fibroblast growth factor 23 (FGF23) level is elevated, and anti-aging protein Klotho is reduced in CKD patients. However, the roles of FGF23 and Klotho in the mechanism of aortic valve fibrosis and calcification remain unclear. We hypothesized that FGF23 mediates CKD-induced CAVD by enhancing aortic valve interstitial cell (AVIC) fibrosis and calcification, while soluble Klotho inhibits FGF23 effect. Methods and Results: In an old mouse model of CKD, kidney damages were accompanied by aortic valve thickening and calcification. FGF23 levels in plasma and aortic valve were increased, while Klotho levels were decreased. Recombinant FGF23 elevated the inflammatory, fibrogenic, and osteogenic activities in AVICs. Neutralizing antibody or shRNA targeting FGF23 suppressed the pathobiological activities in AVICs from valves affected by CAVD. FGF23 exerts its effects on AVICs via FGF receptor (FGFR)/Yes-associated protein (YAP) signaling, and inhibition of FGFR/YAP reduced FGF23's potency in AVICs. Recombinant Klotho downregulated the pathobiological activities in AVICs exposed to FGF23. Incubation of FGF23 with Klotho formed complexes and decreased FGF23's potency. Further, treatment of CKD mice with recombinant Klotho attenuated aortic valve lesions. Conclusion: This study demonstrates that CKD induces FGF23 accumulation, Klotho insufficiency and aortic valve lesions in old mice. FGF23 upregulates the inflammatory, fibrogenic and osteogenic activities in AVICs via the FGFR/YAP signaling pathway. Soluble Klotho suppresses FGF23 effect through molecular interaction and is capable of mitigating CKD-induced CAVD.


Subject(s)
Aortic Valve , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Glucuronidase , Klotho Proteins , Renal Insufficiency, Chronic , Klotho Proteins/metabolism , Fibroblast Growth Factor-23/metabolism , Animals , Renal Insufficiency, Chronic/metabolism , Glucuronidase/metabolism , Fibroblast Growth Factors/metabolism , Mice , Aortic Valve/metabolism , Aortic Valve/pathology , Calcinosis/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Humans , Aortic Valve Stenosis/metabolism , Disease Models, Animal
2.
Cell Death Discov ; 10(1): 331, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033180

ABSTRACT

Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.

3.
Ann Biol Clin (Paris) ; 82(2): 174-186, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38832689

ABSTRACT

Dyslipidemia plays a key role in metabolic syndrome (MS), intricately linked to type 2 diabetes mellitus (T2DM). This study aimed to investigate the differences in low-density lipoprotein cholesterol (LDL-C) subfraction levels between T2DM and T2DM with MS, and identify the risk factors associated with the disease. A total of 246 individuals diagnosed with T2DM, including 144 T2DM patients with MS, and 147 healthy subjects were recruited. All participants underwent a comprehensive clinical evaluation. Lipoprotein subfraction analysis was performed using the Lipoprint LDL system. Multivariate logistic regression analysis revealed that several lipid markers, including triglyceride (TG), LDL-C, large buoyant LDL-C (lbLDL-C), small dense LDL-C (sdLDL-C), LDLC2-5, and sdLDL-C/lbLDL-C ratio, were identified as independent risk factors for T2DM. Additionally, TG, sdLDL-C, LDLC-4, LDLC-5, and sdLDL-C/lbLDL-C ratio were found to be independent risk factors for T2DM with MS. Furthermore, the results of the receiver operating characteristic (ROC) curves demonstrated that sdLDL-C, LDLC-4, LDLC-3, and sdLDL-C/lbLDL-C ratio exhibited excellent predictive performance for the risk of T2DM (AUC > 0.9). The sdLDL-C/lbLDL-C ratio emerges as a shared independent risk factor for T2DM and MS complications. Furthermore, sdLDL-C/lbLDL-C ratio, along with LDL-4 and LDL-3, exhibits noteworthy predictive capabilities for T2DM.


Subject(s)
Biomarkers , Cholesterol, LDL , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Female , Male , Middle Aged , Risk Factors , Cholesterol, LDL/blood , Adult , Biomarkers/blood , Case-Control Studies , Aged
4.
Adv Mater ; 36(21): e2312054, 2024 May.
Article in English | MEDLINE | ID: mdl-38327173

ABSTRACT

2D perovskites have shown great potential toward stable and efficient photovoltaic devices. However, the crystal orientation and phase impurity issues of 2D perovskite films originating from the anisotropic crystal structure and specific growth mechanism have demoted their optoelectronic performances. Here, the surface crystallization modulation technique is introduced to fabricate the high-quality 2D perovskite films with both vertical crystal orientation and high phase purity by regulating the crystallization dynamics. The solvent atmosphere condition is instituted during film processing, which promotes the formation of an oriented 2D perovskite layer in stoichiometric composition at the vapor-liquid interface and templates the subsequent film growth. The solar cells based on the optimized 2D perovskite films exhibit a power conversion efficiency of 15.04%, the record for 2D perovskites (with the perovskite slab thickness n ≤ 3 and high phase purity). The solar cells based on the highly-oriented and phase-pure 2D perovskite films also demonstrate excellent thermal and humidity stabilities.

5.
Front Cardiovasc Med ; 10: 1293866, 2023.
Article in English | MEDLINE | ID: mdl-38094127

ABSTRACT

Introduction: Sepsis is prevalent in the elderly population with increased incidence and mortality. Currently, the mechanism by which aging increases the susceptibility to sepsis and worsens outcome is unclear. We tested the hypothesis that aging exacerbates cardiac dysfunction in sepsis through a Toll-like receptor 2 (TLR2)-dependent mechanism. Methods: Male young adult (4-6 months) and old (18-20 months) wild type (WT) and TLR2 knockout (KO) mice were subject to moderate sepsis by cecal ligation and puncture. Additional groups of young adult and old WT mice were treated with TLR2 agonist Pam3CSK4. Left ventricle (LV) performance was evaluated with a pressure-volume microcatheter. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in the myocardium and plasma were assessed using enzyme-linked immunosorbent assay. Results: Sepsis reduced LV ejection fraction and cardiac output in both young adult and old WT mice. However, identical CLP caused more severe cardiac dysfunction and high mortality in old WT mice that were accompanied by greater levels of TNF-α, IL-1ß, IL-6 and MCP-1 in the myocardium and plasma. TLR2 KO diminished aging-related difference in myocardial and systemic inflammatory response, resulting in improved cardiac function and decreased mortality in old septic mice. In addition, higher myocardial TLR2 levels in old WT mice resulted in greater myocardial inflammatory response and worse cardiac dysfunction following administration of TLR2 agonist. Conclusion: Moderate sepsis results in greater cardiac dysfunction and significant mortality in old mice. Aging elevates TLR2 level/activity to exacerbate the inflammatory response to sepsis, leading to worse cardiac dysfunction and mortality.

6.
Nano Lett ; 23(23): 10788-10795, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37982537

ABSTRACT

All-inorganic cesium lead halide perovskite nanocrystals (NCs) have received much attention due to their outstanding optical and electronic properties, but the underlying growth mechanism remains elusive due to their rapid formation process. Here, we report an in situ real-time study of the growth of Cs4PbBr6 NCs under practical synthesis conditions in a custom-made reactor. Through the synchrotron-based small-angle X-ray scattering technique, we find that the formation of Cs4PbBr6 NCs is accomplished in three steps: the fast nucleation process accompanied by self-focusing growth, the subsequent diffusion-limited Ostwald ripening, and the self-assembly of NCs into the face-centered cubic (fcc) superlattices at high temperature and the termination of growth. The simultaneously collected wide-angle X-ray scattering signals further corroborate the three-step growth model. The influence of superlattice formation is also elucidated, which improves the uniformity of the final NCs.

7.
Funct Integr Genomics ; 23(4): 295, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37691055

ABSTRACT

Huperzia crispata is a traditional Chinese herb plant and has attracted special attention in recent years for its products Hup A can serve as an acetylcholinesterase inhibitor (AChEI). Although the chloroplast (cp) genome of H. crispata has been studied, there are no reports regarding the Huperzia mitochondrial (mt) genome since the previously reported H. squarrosa has been revised as Phlegmariurus squarrosus. The mt genome of H. crispata was sequenced using a combination of long-read nanopore and Illumina sequencing platforms. The entire H. crispata mt genome was assembled in a circular with a length of 412,594 bp and a total of 91 genes, including 45 tRNAs, 6 rRNAs, 37 protein-coding genes (PCGs), and 3 pseudogenes. Notably, the rps8 gene was present in P. squarrosus and a pseudogene rps8 was presented in H. crispata, which was lacking in most of Pteridophyta and Gymnospermae. Intron-encoded maturase (mat-atp9i85 and mat-cobi787) genes were present in H. crispata and P. squarrosus, but lost in other examined lycophytes, ferns, and Gymnospermae plants. Collinearity analysis showed that the mt genome of H. crispata and P. squarrossus is highly conservative compared to other ferns. Relative synonymous codon usage (RSCU) analysis showed that the amino acids most frequently found were phenylalanine (Phe) (4.77%), isoleucine (Ile) (4.71%), lysine (Lys) (4.26%), while arginine (Arg) (0.32%), and histidine (His) (0.42%) were rarely found. Simple sequence repeats (SSR) analysis revealed that a total of 114 SSRs were identified in the mt genome of H. crispata and account for 0.35% of the whole mt genome. Monomer repeats were the majority types of SSRs and represent 91.89% of the total SSRs. In addition, a total of 1948 interspersed repeats (158 forward, 147 palindromic, and 5 reverse repeats) with a length ranging from 30 bp to 14,945 bp were identified in the H. crispata mt genome and the 30-39-bp repeats were the most abundant type. Gene transfer analysis indicated that a total of 12 homologous fragments were discovered between the cp and mt genomes of H. crispata, accounting for 0.93% and 2.48% of the total cp and mt genomes, respectively. The phylogenetic trees revealed that H. crispata was the sister of P. squarrosus. The Ka/Ks analysis results suggested that most PCGs, except atp6 gene, were subject to purification selection during evolution. Our study provides extensive information on the features of the H. crispata mt genome and will help unravel evolutionary relationships, and molecular identification within lycophytes.


Subject(s)
Genome, Mitochondrial , Huperzia , Plants, Medicinal , Plants, Medicinal/genetics , Huperzia/genetics , Phylogeny , Acetylcholinesterase
8.
BMC Genomics ; 24(1): 478, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37612625

ABSTRACT

BACKGROUND: Heat shock protein 20 (HSP20) is a member of the heat stress-related protein family, which plays critical roles in plant growth, development, and response to abiotic stresses. Although many HSP20 genes have been associated with heat stress in numerous types of plants, little is known about the details of the HSP20 gene family in Coix. To investigate the mechanisms of the ClHSP20 response to heat and drought stresses, the ClHSP20 gene family in Coix was identified and characterized based on genome-wide analysis. RESULTS: A total of 32 putative ClHSP20 genes were identified and characterized in Coix. Phylogenetic analysis indicated that ClHSP20s were grouped into 11 subfamilies. The duplicated event analysis demonstrated that tandem duplication and segment duplication events played crucial roles in promoting the expansion of the ClHSP20 gene family. Synteny analysis showed that Coix shared the highest homology in 36 HSP20 gene pairs with wheat, followed by 22, 19, 15, and 15 homologous gene pairs with maize, sorghum, barley, and rice, respectively. The expression profile analysis showed that almost all ClHSP20 genes had different expression levels in at least one tissue. Furthermore, 22 of the 32 ClHSP20 genes responded to heat stress, with 11 ClHSP20 genes being significantly upregulated and 11 ClHSP20 genes being significantly downregulated. Furthermore, 13 of the 32 ClHSP20 genes responded to drought stress, with 6 ClHSP20 genes being significantly upregulated and 5 ClHSP20 genes being significantly downregulated. CONCLUSIONS: Thirty-two ClHSP20 genes were identified and characterized in the genome of Coix. Tandem and segmental duplication were identified as having caused the expansion of the ClHSP20 gene family. The expression patterns of the ClHSP20 genes suggested that they play a critical role in growth, development, and response to heat and drought stress. The current study provides a theoretical basis for further research on ClHSP20s and will facilitate the functional characterization of ClHSP20 genes.


Subject(s)
Coix , Heat-Shock Proteins , Animals , Droughts , Phylogeny , Estrus
9.
Int J Biol Sci ; 19(12): 3908-3919, 2023.
Article in English | MEDLINE | ID: mdl-37564205

ABSTRACT

Calcific aortic valve disease (CAVD) is a chronic inflammatory disease with slow progression that involves soluble extracellular matrix (ECM) proteins. Previously, we found that recombinant interleukin (IL)-37 suppresses aortic valve interstitial cells (AVIC) inflammatory response through the interaction with IL-18 receptor α-chain (IL-18Rα) on the cell surface. Endogenous IL-37 can be retained in the cytoplasm or released into extracellular spaces. It remains unknown whether recombinant IL-37 exerts the anti-inflammatory effect through intracellular action. Here, we found that recombinant IL-37 suppressed AVIC inflammatory response to soluble ECM proteins. Interestingly, recombinant IL-37 was internalized by human AVICs in an IL-18Rα-independent fashion. Blocking endocytic pathways reduced the internalization and anti-inflammatory potency of recombinant IL-37. Overexpression of IL-37 in human AVICs suppressed soluble ECM proteins-induced NF-κB activation and the production of ICAM-1 and VCAM-1. However, IL-37D20A (mutant IL-37 lacking nucleus-targeting sequences) overexpression had no such effect, and the inflammatory response to soluble ECM proteins was essentially intact in AVICs from transgenic mice expressing IL-37D20A. Together, recombinant IL-37 can be internalized by human AVICs through endocytosis. Intracellular IL-37 exerts an anti-inflammatory effect through a nucleus-targeting mechanism. This study highlights the potent anti-inflammatory effect of recombinant IL-37 in both extracellular and intracellular compartments through distinct mechanisms.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Interleukin-1 , Animals , Humans , Mice , Anti-Inflammatory Agents , Aortic Valve Stenosis/metabolism , Cells, Cultured , Signal Transduction , Interleukin-1/pharmacology , Recombinant Proteins/pharmacology
10.
BMC Cancer ; 23(1): 616, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400750

ABSTRACT

OBJECTIVE: To investigate the relationship among 18 heavy metals, microsatellite instability (MSI) status, ERCC1, XRCC1 (rs25487), BRAF V600E and 5 tumor markers and their role in the development of colorectal cancer (CRC). METHODS: A total of 101 CRC patients and 60 healthy controls were recruited in the present study. The levels of 18 heavy metals were measured by ICP-MS. MSI status and the genetic polymorphism were determined by PCR (FP205-02, Tiangen Biochemical Technology Co., Ltd., Beijing, China) and Sanger sequencing. Spearman's rank correlation was used to analyze the relationship among various factors. RESULTS: The level of selenium (Se) was lower in the CRC group compared with the control group (p < 0.01), while vanadium (V), arsenic (As), tin (Sn), barium (Ba) and lead (Pb) were higher (p < 0.05), chromium (Cr) and copper (Cu) were significantly higher (p < 0.0001) in the CRC group than those in the control group. Multivariate logistic regression analysis indicated that Cr, Cu, As and Ba were the risk factors for CRC. In addition, CRC was positively correlated with V, Cr, Cu, As, Sn, Ba and Pb, but negatively correlated with Se. MSI was positively correlated with BRAF V600E, but negatively correlated with ERCC1. BRAF V600E was positively correlated with antimony (Sb), thallium (Tl), CA19-9, NSE, AFP and CK19. XRCC1 (rs25487) was found to be positively correlated with Se but negatively correlated with Co. The levels of Sb and Tl were significantly higher in the BRAF V600E positive group compared to the negative group. The mRNA expression level of ERCC1 was significantly higher (P = 0.035) in MSS compared to MSI. And there was a significant correlation between XRCC1 (rs25487) polymorphism and MSI status (P<0.05). CONCLUSION: The results showed that low level of Se and high levels of V, As, Sn, Ba, Pb, Cr, and Cu increased the risk of CRC. Sb and Tl may cause BRAF V600E mutations, leading to MSI. XRCC1 (rs25487) was positively correlated with Se but negatively correlated with Co. The expression of ERCC1 may be related to MSS, while the XRCC1 (rs25487) polymorphism is related to MSI.


Subject(s)
Colorectal Neoplasms , DNA-Binding Proteins , Endonucleases , Metals, Heavy , Microsatellite Instability , Proto-Oncogene Proteins B-raf , X-ray Repair Cross Complementing Protein 1 , Colorectal Neoplasms/blood , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Metals, Heavy/blood , DNA-Binding Proteins/genetics , Endonucleases/genetics , Proto-Oncogene Proteins B-raf/genetics , Polymorphism, Genetic , Risk Factors , Humans , Male , Female , Adult , Middle Aged , Incidence
11.
Res Sq ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292905

ABSTRACT

Objective: Endotoxemic cardiac dysfunction contributes to greater morbidity and mortality in elderly patients with sepsis. This study tested the hypothesis that Klotho insufficiency in aging heart exaggerates and prolongs myocardial inflammation to hinder cardiac function recovery following endotoxemia. Methods: Endotoxin (0.5 mg/kg, iv) was administered to young adult (3-4 months) and old (18-22 months) mice with or without subsequent treatment with recombinant interleukin-37 (IL-37, 50 µg/kg, iv) or recombinant Klotho (10 µg/kg, iv). Cardiac function was analyzed using a microcatheter 24, 48 and 96 h later. Myocardial levels of Klotho, ICAM-1, VCAM-1 and IL-6 were determined by immunoblotting and ELISA. Results: In comparison to young adult mice, old mice had worse cardiac dysfunction accompanied by greater myocardial levels of ICAM-1, VCAM-1 and IL-6 at each time point following endotoxemia and failed to fully recover cardiac function by 96 h. The exacerbated myocardial inflammation and cardiac dysfunction were associated with endotoxemia-caused further reduction of lower myocardial Klotho level in old mice. Recombinant IL-37 promoted inflammation resolution and cardiac functional recovery in old mice. Interestingly, recombinant IL-37 markedly up-regulated myocardial Klotho levels in old mice with or without endotoxemia. Similarly, recombinant Klotho suppressed myocardial inflammatory response and promoted inflammation resolution in old endotoxemic mice, leading to complete recovery of cardiac function by 96 h. Conclusion: Myocardial Klotho insufficiency in old endotoxemic mice exacerbates myocardial inflammatory response, impairs inflammation resolution and thereby hinders cardiac functional recovery. IL-37 is capable of up-regulating myocardial Klotho expression to improve cardiac functional recovery in old endotoxemic mice.

12.
Protoplasma ; 260(5): 1389-1405, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37041371

ABSTRACT

Auxin response factor (ARF) is an important transcription factor that regulates the expression of auxin-responsive genes by direct binding to their promoters, which play a central role in plant growth, development, and response to abiotic stresses. The availability of the entire Coix (Coix lacryma-jobi L.) genome sequence provides an opportunity to investigate the characteristics and evolutionary history of the ARF gene family in this medicine and food homology plant for the first time. In this study, a total of 27 ClARF genes were identified based on the genome-wide sequence of Coix. Twenty-four of the 27 ClARF genes were unevenly distributed on 8 chromosomes except Chr 4 and 10, and the remaining three genes (ClARF25-27) were not assigned to any chromosome. Most of the ClARF proteins were predicted to be localized to the nucleus, except ClARF24, which was localized to both the plasma membrane and nucleus. Twenty-seven ClARFs were clustered into six subgroups based on the phylogenetic analysis. Duplication analysis showed that segmental duplication, rather than tandem duplications promoting the expansion of the ClARF gene family. Synteny analysis showed that purifying selection might have been a primary driving force in the development of the ARF gene family in Coix and other investigated cereal plants. The prediction of the cis element of the promoter showed that 27 ClARF genes contain several stress response elements, suggesting that ClARFs might be involved in the abiotic stress response. Expression profile analysis shows that 27 ClARF genes were all expressed in the root, shoot, leaf, kernel, glume, and male flower of Coix with varying expression levels. Furthermore, qRT-PCR analyses revealed that the majority of ClARFs members were upregulated or downregulated in response to hormone treatment and abiotic stress. The current study expands our understanding of the functional roles of ClARFs in stress responses and provides basic information for the ClARF genes.


Subject(s)
Coix , Indoleacetic Acids , Indoleacetic Acids/metabolism , Coix/genetics , Coix/metabolism , Phylogeny , Evolution, Molecular , Multigene Family , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics
13.
Adv Mater ; 35(11): e2209712, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36579894

ABSTRACT

2D layered perovskites (LPs) have shown great potential to deliver high-performance photovoltaic devices with long-term stability. Despite many signs of progress being made in film quality and device performance, LP films are mainly processed in strict conditions and through non-scalable techniques. Here, the hot-air-assisted ambient fabrication technique is introduced to prepare LP films for efficient and stable solar cells. The high-quality LP films with good crystallinity, preferable orientation and desirable morphology are obtained by balancing the crystal nucleation and growth processes. Employing the synchrotron-based in situ grazing-incidence X-ray diffraction technique, hot air induces the solidification of solutes and forms an intermediate at the air-liquid interface, which transforms into 3D-like perovskite, followed by the growth of the 2D species toward the substrate. The optimal LP film delivers a device power conversion efficiency of 16.36%, the best value for the LP-based solar cells prepared by the non-spin-coating techniques. The solar cell performance is insensitive to the film processing humidity and the device size is upscalable, which promises real-world deployment of LP-based optoelectronic devices.

14.
Mol Biol Rep ; 49(12): 11729-11741, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36197623

ABSTRACT

BACKGROUND: Huperzia crispata, belonging to the Huperziaceae family, is one of the most essential resources of huperzine A for candidate drugs to treat Alzheimer's diseases. However, there is very limited information about H. crispat, and its taxonomic status and interspecific relationships between Huperzia species are still unclear. To investigate the taxonomic classification of Huperzia species and identify species discrimination markers, the complete chloroplast (cp) genome of H. crispata was sequenced and characterized for the first time. METHODS AND RESULTS: Total genomic DNA was isolated and sequenced using the next-generation Illumina NovaSeq 6000 platform. The data were filtered, assembled and annotated by a series software and web service. The results were as follows: the cp genome of H. crispata was 154,320 bp long with a large single-copy (LSC) region of 104,023 bp, a small single-copy (SSC) region of 19,671 bp, and a pair of inverted repeat (IRa and IRb) regions of 15,313 bp. A total of 131 genes, including 87 protein-coding genes, 36 transfer RNA genes (tRNAs), and eight ribosome RNA genes (rRNAs), were annotated in the cp genome. The contraction and expansion of the inverted repeat (IR) regions were relatively conserved in the Huperzia genus. Codon usage bias analysis showed that the encoding rate at the 3-end of codon A/T (74.34%) was significantly higher than that of C/G (25.66%). A total of 8 hotspot loci with high Pi values (> 0.06) were identified in the four Huperzia species based on nucleic acid diversity analysis. Ka/Ks selective pressure analysis demonstrated that the cemA gene is the most common gene undergoing positive selection among Huperzia. In addition, a total of 261 simple sequence repeats and 179 interspersed repeats were identified in the cp genome. Phylogenetic tree analysis based on the complete protein sequences of 23 related species of H. crispata indicated that H. serrata f. longipetiolata is a sister of H. crispata, suggesting that H. serrata f. longipetiolata and H. crispata are more closely related than H. serrata and H. lucidula. CONCLUSIONS: The results strongly supported that H. crispata was more closely related to H. serrata f. longipetiolata than to H. serrata and H. lucidula within the Huperzia genus. The outcome provided important information for the phylogenetic analysis of the subsequent specific molecular species identification in Huperzia. The present results will provide valuable information for further research into the classification, phylogeny and species identification of Huperzia plants.


Subject(s)
Genome, Chloroplast , Huperzia , Genome, Chloroplast/genetics , Phylogeny , Huperzia/genetics , Microsatellite Repeats/genetics , Codon , RNA, Transfer/genetics
15.
Nano Lett ; 22(19): 7826-7833, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36136599

ABSTRACT

Precise control of crystal orientation in two-dimensional (2D) layered perovskites (LPs) is vital for their optoelectronic applications due to the structure-induced anisotropy in optical and electrical properties. Herein, we directly observe and control the crystal orientation of the butylammonium-based 2D LP films. Employing the synchrotron-based in situ grazing-incidence X-ray diffraction technique, we reveal the orientation modulation mechanism of the Cl additive by following the crystallization dynamics and chemical conversion pathways during film formation. Two new Cl-related intermediates are identified which serve as templates directing the orientational growth of the 2D LP films. We fine-tune the crystal orientation of 2D LP films through the Cl additive and incorporate the films with the requisite crystal orientations in solar cells and photodetectors. The optoelectronic performances of the devices show a strong correlation with the crystal orientation of the 2D LP films.

16.
BMC Microbiol ; 22(1): 191, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931950

ABSTRACT

BACKGROUND: Huperzine A (Hup A) has attracted considerable attention as an effective therapeutic candidate drug used to treat Alzheimer's disease. Whereas, the production of Hup A from wild plants faced a major challenge, which is the wild Huperzia Serrata harbor a low Hup A content, has a long-life cycle, and has a small yield. At present, several reports showed that Hup A is produced by various endophytic fungal strains isolated from H. serrata, thereby providing an alternative method to produce the compound and reduce the consumption of this rare and endangered plant. However, till now, very few comprehensive studies are available on the biological diversity and structural composition of endophytic fungi and the effects of endophytic fungi on the Hup A accumulation in H. serrata. RESULTS: In this research, the composition and diversity of fungal communities in H. serrata were deciphered based on high-throughput sequencing technology of fungal internal transcribed spacer regions2 (ITS2). The correlation between endophytic fungal community and Hup A content was also investigated. Results revealed that the richness and the diversity of endophytic fungi in H. serrata was various according to different tissues and different ecological areas. The endophytic fungal communities of H. serrata exhibit species-specific, ecological-specific, and tissue-specific characteristics. There are 6 genera (Ascomycota_unclassified, Cyphellophora, Fungi_unclassified, Sporobolomyces, and Trichomeriaceae_unclassified) were significantly positively correlated with Hup A content in all two areas, whereas, there are 6 genera (Auricularia, Cladophialophora, Cryptococcus, Mortierella, and Mycena) were significantly negatively correlated with Hup A content of in all two areas. CONCLUSIONS: This study indicated a different composition and diverse endophytic fungal communities in H. serrata from different organs and ecological areas. The current study will provide the realistic basis and theoretical significance for understanding the biological diversity and structural composition of endophytic fungal communities in H. serrata, as well as providing novel insights into the interaction between endophytic fungi and Hup A content.


Subject(s)
Ascomycota , Basidiomycota , Huperzia , Mycobiome , Alkaloids , Biodiversity , Endophytes , Fungi , Huperzia/microbiology , Sesquiterpenes
17.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037361

ABSTRACT

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Interleukins , Animals , Anti-Inflammatory Agents/pharmacology , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/drug therapy , Calcium/metabolism , Caspases/metabolism , Cells, Cultured , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukins/genetics , Interleukins/metabolism , Interleukins/pharmacology , Matrilin Proteins/pharmacology , Mice , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteogenesis , Receptors, Interleukin-9/genetics , Recombinant Proteins/pharmacology
18.
Fish Shellfish Immunol ; 128: 28-37, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35842114

ABSTRACT

Litopenaeus vannamei is the most important shrimp species throughout the world. However, diseases are increasing with the development of the industry, so enhancing the immunity of shrimp is of great significance. In this study, 1800 shrimp were divided into two groups randomly: the control group (N, feed with brine shrimp flake) and the experimental group (M, feed with mutant of Synechocystis sp. cells) (300 shrimp/group/replication) and each trial was conducted in triplicates. After immunization, sixty shrimp (with three replicates of twenty) were collected at 0 h in group N and 24, 72, and 144 h in group M, respectively, and the hepatopancreas were isolated for transcriptomic and metabolomic analysis. Transcriptome data revealed that compared with group N, genes related to antimicrobial peptides, cytoskeleton remodeling, detoxification, apoptosis, blood coagulation, immune defense, and antioxidant systems were differentially expressed in group M. In addition, combined transcriptomic and metabolomic analysis revealed that some immune-related differential genes or differential metabolites were consistently expressed in both omics. All the above results indicated that trans-vp28 gene Synechocystis sp. PCC6803 could improve the immunity of L. vannamei. This is the first report of the integration of dynamic transcriptomics combined with metabolomics to study the effect of trans-vp28 gene Synechocystis sp. PCC6803 in the hepatopancreas of L. vannamei and provided important information about the defense and immune mechanisms used by invertebrates against pathogens.


Subject(s)
Penaeidae , Synechocystis , Animals , Antioxidants/metabolism , Hepatopancreas/metabolism , Metabolomics , Synechocystis/genetics , Transcriptome
19.
Front Immunol ; 13: 891570, 2022.
Article in English | MEDLINE | ID: mdl-35493479

ABSTRACT

This study tested the hypothesis that Toll-like receptor 2 (TLR2) augments the inflammatory responses and adverse remodeling in aging hearts to exacerbate myocardial injury and cardiac dysfunction. Methods: Old (20-22 months old) and adult (4-6 months old) mice of C57BL/6 wild-type and TLR2 knockout (KO) were subjected to coronary artery ligation (30 minutes) and reperfusion (3 or 14 days). Left ventricle function was assessed using a pressure-volume microcatheter. Cardiac infarct size was determined by histology. Levels of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase 9 (MMP 9), and collagen I in non-ischemic myocardium were assessed by immunoblotting. Monocyte chemoattractant protein-1 (MCP-1), keratinocyte chemoattractant (KC), and interleukin-6 (IL-6) levels in ischemic and non-ischemic myocardium were measured by enzyme-linked immunosorbent assay (ELISA). TLR2 expression in the myocardium of untreated wild type mice was also measured by immunoblotting. Results: Higher levels of MCP-1, KC, IL-6 were induced in both ischemic and non-ischemic myocardium of old wild type mice at day 3 and 14 following ischemia/reperfusion (I/R) than those of adult wild type mice. The hyper-inflammatory responses to I/R in aging hearts were associated with elevated levels of myocardial TLR2. TLR2 KO markedly down-regulated the expression of MCP-1, KC, IL-6, ICAM-1 and VCAM-1 in aging hearts at day 3 and 14 following I/R. The down-regulated inflammatory activity in aging TLR2 KO hearts was associated with attenuated production of MMP 9 and collagen I at day 14 and resulted in reduced infarct size and improved cardiac function. Conclusion: Elevated expression of myocardial TLR2 contributes to the mechanism by which aging exacerbates the inflammatory responses, adverse remodeling and cardiac dysfunction following myocardial I/R in aging.


Subject(s)
Heart Diseases , Reperfusion Injury , Aging/physiology , Animals , Collagen , Infarction , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6 , Ischemia , Matrix Metalloproteinase 9 , Mice , Mice, Inbred C57BL , Toll-Like Receptor 2/metabolism , Vascular Cell Adhesion Molecule-1
20.
Sci China Life Sci ; 65(9): 1776-1793, 2022 09.
Article in English | MEDLINE | ID: mdl-35394636

ABSTRACT

Cotton fiber is a highly elongated and thickened single cell that produces large quantities of cellulose, which is synthesized and assembled into cell wall microfibrils by the cellulose synthase complex (CSC). In this study, we report that in cotton (Gossypium hirsutum) fibers harvested during secondary cell wall (SCW) synthesis, GhCesA 4, 7, and 8 assembled into heteromers in a previously uncharacterized 36-mer-like cellulose synthase supercomplex (CSS). This super CSC was observed in samples prepared using cotton fiber cells harvested during the SCW synthesis period but not from cotton stem tissue or any samples obtained from Arabidopsis. Knock-out of any of GhCesA 4, 7, and 8 resulted in the disappearance of the CSS and the production of fiber cells with no SCW thickening. Cotton fiber CSS showed significantly higher enzyme activity than samples prepared from knock-out cotton lines. We found that the microfibrils from the SCW of wild-type cotton fibers may contain 72 glucan chains in a bundle, unlike other plant materials studied. GhCesA4, 7, and 8 restored both the dwarf and reduced vascular bundle phenotypes of their orthologous Arabidopsis mutants, potentially by reforming the CSC hexamers. Genetic complementation was not observed when non-orthologous CesA genes were used, indicating that each of the three subunits is indispensable for CSC formation and for full cellulose synthase function. Characterization of cotton CSS will increase our understanding of the regulation of SCW biosynthesis.


Subject(s)
Arabidopsis , Cotton Fiber , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL