Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1426920, 2024.
Article in English | MEDLINE | ID: mdl-39149581

ABSTRACT

Background: Pulsed field ablation, as a non-thermal ablation modality, has received increasing attention. The aim of this study is to explore whether a reversible pulsed electric field (RPEF) can temporarily inhibit electrical conduction and provide a novel method for precise ablation of arrhythmia. Methods: RPEF energy was delivered from an ablation catheter to the atrium of six dogs, followed by a series of electrogram and histology assessments. Results: RPEF ablation of ordinary myocardium resulted in an average reduction of 68.3% (range, 53.7%-83.8%) in electrogram amplitude, while 5 min later, the amplitude in eight electrograms returned to 77.9% (range, 72.4%-87.3%) of baseline. Similarly, the amplitude of the sinoatrial node electrograms reduced by an average of 73.0% (range, 60.2%-84.4%) after RPEF ablation, but recovered to 84.9% (range, 80.3%-88.5%) of baseline by 5 min. No necrotic change was detected in histopathology. Transient third-degree atrioventricular block occurred following the ablation of the maximum His potential sites with RPEF, the duration of which was voltage dependent. The histopathological results showed necrosis of the myocardium at the ablation sites but no injury to His bundle cells. Conclusions: RPEF can be applied to transiently block electrical conduction in myocardial tissues contributing to precise ablation.

2.
Med Sci Monit ; 30: e945007, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078809

ABSTRACT

BACKGROUND Pulsed field ablation (PFA), as a non-thermal ablation modality, has received increasing attention. The aim of this study was to evaluate the effect of PFA upon His bundle via its implementation with different voltages on the maximum His bundle potential in canines, providing scientific basis for clinical application. MATERIAL AND METHODS Pulsed electrical field energy was delivered from a ablation catheter to the maximum His potential of 7 dogs, followed by a series of electrogram and histology assessments. RESULTS The baseline AH and HV intervals were 55.3±3.7 ms (range, 53.0-59.0 ms), and 34.9±1.3 ms (range, 34.0-36.0 ms), respectively, which were elevated to 65.0±5.4 ms (range, 59.0-70.0 ms) and 35.7±2.7 ms (range, 34.0-37.0 ms) after PFA. Before ablation and immediately after the recovery of third-degree AVB, the AH interval was prolonged (P<0.05) while the HV interval remained unchanged (P>0.05). After ablation, all 7 canines experienced transient third-degree AVB, with a voltage-dependent duration. Masson staining results revealed no apparent damage in His bundle cells. CONCLUSIONS Within a certain voltage range of pulse electric field, ablation of the maximum His potential in canines can result in transient third-degree AVB, providing a new route for guiding safe ablation of para-Hisian arrhythmia.


Subject(s)
Bundle of His , Catheter Ablation , Animals , Dogs , Bundle of His/physiopathology , Catheter Ablation/methods , Electrocardiography/methods , Male , Action Potentials/physiology
SELECTION OF CITATIONS
SEARCH DETAIL