Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 164: 104047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072082

ABSTRACT

The non-neuronal cholinergic system, widely distributed in nature, is an ancient system that has not been well studied in insects. This study aims to investigate the key components of the cholinergic system and to identify the non-neuronal acetylcholine (ACh)-producing cells and the acting sites of ACh in the Malpighian tubules (MTs) of Mythimna separata. We found that non-neuronal ACh in MTs is synthesized by carnitine acetyltransferase (CarAT), rather than choline acetyltransferase (ChAT), as confirmed by using enzyme inhibitors and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Fluorescence in situ hybridization revealed the presence of CarAT mRNA within MTs, specifically localized in the principal cells. Immunohistochemistry showed strong staining for A-mAChR, a muscarinic acetylcholine receptor, in the principal cells. Pharmacological analysis further demonstrated that ACh acts through A-mAChR in the principal cells to increase the intracellular Ca2+ concentration. These findings provide compelling evidence for the existence of a non-neuronal cholinergic system in the MTs of M. separata, and the principal cells play a crucial role in ACh synthesis via CarAT.


Subject(s)
Acetylcholine , Non-Neuronal Cholinergic System , Animals , Acetylcholine/pharmacology , Malpighian Tubules/metabolism , In Situ Hybridization, Fluorescence , Tandem Mass Spectrometry
2.
Pest Manag Sci ; 78(12): 5220-5233, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053883

ABSTRACT

BACKGROUND: Acetylcholine (ACh), as a classical neurotransmitter, plays great roles in the nervous system. There is increasing evidence of its non-neuronal roles in regulating basic cell functions in vertebrates. However, knowledge about the non-neuronal cholinergic system in insects is scarce. RESULTS: A comparative transcriptome analysis was performed to investigate differences in the key molecular components of the cholinergic system between the head and ovary. The results showed that expression levels of most cholinergic system-related genes were higher in the head than in the ovary, and some cholinergic components were absent in the ovary. ACh contents ranged from 0.1 to 1.3 µg mg-1 of wet weight during the development of the ovary, and weak acetylcholinesterase activity was also detected. Moreover, the ovary has a capacity for ACh synthesis. Bromoacetylcarnitine (BrACar), a specific carnitine acetyltransferase (CarAT) inhibitor, greatly inhibits ACh synthesis by 83.83% in ovary homogenates, but bromoacetylcholine (BrACh), a specific choline acetyltransferase (ChAT) inhibitor, has no effect on ACh synthesis in the ovary. These findings indicate that non-neuronal ACh in the ovary is only catalyzed by CarAT. CONCLUSION: This study reveals the existence of the non-neuronal cholinergic system in the ovary of M. separata, whose synthesis and release mechanisms are different from those of the head. These results provide novel insights into the non-neuronal cholinergic system in insects, and will be valuable in the discovery of new target genes and the future development of green pest control. © 2022 Society of Chemical Industry.


Subject(s)
Moths , Non-Neuronal Cholinergic System , Animals , Female , Spodoptera/metabolism , Ovary/metabolism , Acetylcholinesterase/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , Gene Expression Profiling , Cholinergic Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL