Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(23): 236801, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298914

ABSTRACT

The standard entanglement test using the Clauser-Horne-Shimony-Holt inequality is known to fail in mesoscopic junctions at finite temperatures. Since this is due to the bidirectional particle flow, a similar failure is expected to occur in an ac-driven contact. We develop a continuous-variable entanglement test suitable for electrons and holes that are created by the ac drive. At low enough temperatures the generalized Bell inequality is violated in junctions with low conductance or a small number of transport channels and with ac voltages which create few electron-hole pairs per cycle. Our ac-entanglement test depends on the total number of electron-hole pairs and on the distribution of probabilities of pair creations similar to the Fano factor.

2.
Nanotechnology ; 24(15): 155202, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23519227

ABSTRACT

We report the theoretical investigation of the shot noise of the spin current (S(σ)) and the spin transfer torque (S(τ)) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green's function method, and general nonlinear S(σ) - V and S(τ) - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...