Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int Immunopharmacol ; 137: 112393, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852522

ABSTRACT

Recombinant adenovirus serotype 5 (Ad5)-mediated virotherapy is a maturing technique in cancer treatment. However, the utility of adenovirus (Ad) has been limited by low expression of coxsackievirus and adenovirus receptor (CAR) in cancer cells resulting in poor infectivity of Ads. To overcome the problem, we aimed to develop a novel tropism-modified oncolytic adenovirus, ZD55-F-HI-sPD-1-EGFP, which contains the epitope of PD-1 (70-77aa) at the HI-loop of Ad fiber. Trimerization of Fiber-sPD-1 was confirmed by immunoblot analysis. ZD55-F-HI-sPD-1-EGFP shows a remarkable improvement in viral infection rate and gene transduction efficiency in the PD-L1-positive cancer cells. Competition assays with a PD-L1 protein reveals that cell internalization of ZD55-F-HI-sPD-1-EGFP is mediated by both CAR and PD-L1 at a high dose. The progeny virus production capacity showed that sPD-1 incorporated fiber-modified oncolytic Ad replication was not affected. Furthermore, treating with ZD55-F-HI-sPD-1-EGFP significantly increased viral infection rate and enhanced anti-tumor effect in vivo. This study demonstrates that the strategy to expand tropism of oncolytic Ad may significantly improve therapeutic profile for cancer treatment.

2.
Int Immunopharmacol ; 128: 111579, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38278066

ABSTRACT

BACKGROUND: Clinical data indicate that a substantial portion of cancer patients, though eligible for immune checkpoint inhibitor (ICI) therapy, cannot fully benefit from ICI monotherapy due to the poor immunogenicity of tumors and lack of tumor-infiltrating lymphocytes within the 'cold' tumor microenvironment (TME). In addition to poor antibody penetrance into the TME, systemic delivery of ICIs is associated with immune-related adverse events (irAEs) among recipients, some of which are life-threatening. Oncolytic virotherapy is a potentially viable approach to improving the efficacy of ICI therapy because of their ability to selectively replicate and lyse tumor cells, release tumor-associated antigens (TAAs), induce inflammatory response and promote lymphocyte infiltration in tumors. METHODS: A recombinant oncolytic adenoviruses (OAd), denoted ZD55-aPD-L1 scFv, which carried the expression cassette for anti-PD-L1 scFv was constructed by molecular cloning. Western blot and ELISA assay were performed to detect aPD-L1 scFv expression. Flow cytometry were used to analyse PD-L1 expression and count tumor cells. Co-culture assay of human peripheral blood mononuclear cells (PBMCs) with tumor cells in vitro and triple-negative breast cancer (TNBC) MDA-MB-231 tumor-bearing model in vivo were evaluated the antitumor effects of recombinant oncolytic adenoviruses ZD55-aPD-L1 scFv. RESULTS: We found that cells infected with recombinant oncolytic adenovirus ZD55-aPD-L1 scFv can effectively express aPD-L1 scFv, which function similarly to its full-length anti-PD-L1 antibody. PBMCs have inherently very limited killing effect on tumor cells even with administration of anti-PD-L1 antibody as observed from our in vitro co-cultures. Treatment consisting of ZD55 alone or ZD55 combined with anti-PD-L1 antibody yielded mediocre antitumor efficacy in subsequent in vitro and in vivo investigations, but were all substantially surpassed by the synergistic antitumor effects observed with ZD55-aPD-L1 scFv treatment. We show that the concomitant direct oncolysis by the recombinant OAd and localized autocrine/paracrine interception of PD-1:PD-L1 checkpoint interaction mediated by ZD55-aPD-L1 scFv-infected cells is exceedingly superior to co-administration of ZD55 and anti-PD-L1 antibody in the human TNBC mice model. CONCLUSIONS: Our results provided evidence for the development of novel strategies, in this case an anti-PD-L1 scFv-armed OAd, to bolster immune responses to 'cold' tumors and to improve therapeutic responsiveness to ICIs.


Subject(s)
Immune Checkpoint Inhibitors , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Adenoviridae , B7-H1 Antigen , Leukocytes, Mononuclear , Cell Line, Tumor , Tumor Microenvironment
3.
Int Immunopharmacol ; 124(Pt B): 111020, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812969

ABSTRACT

As SARS-CoV-2 variants continue spreading globally, the discovery of broad spectrum therapeutically active antibodies with retaining good protective activity is a global priority. It was reported that infection with SARS-CoV-2 could cause acute lung injury (ALI) in clinical investigations. Therefore, we discovered that anti-RBD scFv is effective against SARS-CoV-2-induced ALI. To begin, we utilized the receptor binding domain (RBD) of spike glycoprotein as a target to produce single-chain antibodies (scFvs) through an intensive phage display technology. The binding affinity and inhibitory effect of the scFvs were evaluated via ELISA and flow cytometry. Moreover, anti-RBD scFv No.35 significantly prevented ALI caused by LPS and SARS-CoV-2 spike RBD protein in mouse model. Thus, the anti-RBD scFv will aid the development of potential antibody treatments and reduce the inflammatory response of SARS-CoV-2.


Subject(s)
Acute Lung Injury , Single-Chain Antibodies , Animals , Mice , Antibodies, Viral/therapeutic use , Protein Binding , Single-Chain Antibodies/therapeutic use , Acute Lung Injury/drug therapy , Antibodies, Neutralizing/therapeutic use
4.
Front Immunol ; 13: 1012499, 2022.
Article in English | MEDLINE | ID: mdl-36341340

ABSTRACT

The trans-membrane proteins of the B7 family programmed cell death ligand-1 (PD-L1) and programmed death-1 (PD-1) play important roles in inhibiting immune responses and enhancing self-tolerance via T-cell modulation. Several therapeutic antibodies are used to promote T-cell proliferation by preventing interactions between PD-1/PD-L1. Recombinant technology appears to be quite useful in the production of such potent antibodies. In this study, we constructed recombinant molecules by cloning variable regions of the PD-L1 molecule into pMH3 vectors and transferring them into mammalian cell lines for expression. G418 supplementation was used to screen the recombinant clones, which were then maintained on serum-free medium. The full-length antibody was isolated and purified from the medium supernatant at a concentration of 0.5-0.8 mg/ml. Antibody binding affinity was investigated using ELISA and immunofluorescence methods. The protein-protein interactions (PPI) were determined using a docking approach. The SWISS model was utilized for homology modeling, while ZDOCK, Chimera, and PyMOL were used to validate 3D models. The Ramachandran plots were constructed using the SWISS model, which revealed that high-quality structures had a value of more than 90%. Current technologies allow for the accurate determination of antigen-antibody interactions.


Subject(s)
Antibodies, Monoclonal , B7-H1 Antigen , Animals , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Ligands , Bioengineering , Apoptosis , Mammals
5.
Prep Biochem Biotechnol ; 52(3): 318-324, 2022.
Article in English | MEDLINE | ID: mdl-34187304

ABSTRACT

The receptor binding domain (RBD) of SARS-CoV-2 is located in the C-terminal of S1 subunit of the spike (S) protein which is responsible for recognizing and binding to the angiotensin-converting enzyme 2 (ACE2) receptor. The DNA encoding the SARS-CoV-2 RBD was inserted into pET-28a (+) to construct expression plasmid pET-28a (+)/RBD. The desired RBD protein was produced in E. coli Rosetta (DE) and purified by a Ni-NTA column. The recombinant RBD was analyzed by SDS-PAGE and Western blot. The flow cytometry analysis indicated that the recombinant RBD is capable of binding to human ACE2 (hACE2) in the ACE2-overexpressed HEK293A-hACE2 cells. Our results demonstrated that recombinant RBD expressed in E. coli Rosetta (DE) strain has bioactivities and can be used as an antigen for diagnosis and as a tool for the development of novel anti-viral drugs against SASR-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , Escherichia coli/genetics , Flow Cytometry , HEK293 Cells , Humans , Plasmids , Protein Engineering , Protein Interaction Domains and Motifs
6.
Front Microbiol ; 12: 706700, 2021.
Article in English | MEDLINE | ID: mdl-34504479

ABSTRACT

Phage-host interactions are likely to have the most critical aspect of phage biology. Phages are the most abundant and ubiquitous infectious acellular entities in the biosphere, where their presence remains elusive. Here, the novel Escherichia coli lytic bacteriophage, named MSK, was isolated from the lysed culture of E. coli C (phix174 host). The genome of phage MSK was sequenced, comprising 45,053 bp with 44.8% G + C composition. In total, 73 open reading frames (ORFs) were predicted, out of which 24 showed a close homology with known functional proteins, including one tRNA-arg; however, the other 49 proteins with no proven function in the genome database were called hypothetical. Electron Microscopy and genome characterization have revealed that MSK phage has a rosette-like tail tip. There were, in total, 46 ORFs which were homologous to the Rtp genome. Among these ORFs, the tail fiber protein with a locus tag of MSK_000019 was homologous to Rtp 43 protein, which determines the host specificity. The other protein, MSK_000046, encodes lipoprotein (cor gene); that protein resembles Rtp 45, responsible for preventing adsorption during cell lysis. Thirteen MSK structural proteins were identified by SDS-PAGE analysis. Out of these, 12 were vital structural proteins, and one was a hypothetical protein. Among these, the protein terminase large (MSK_000072) subunit, which may be involved in DNA packaging and proposed packaging strategy of MSK bacteriophage genome, takes place through headful packaging using the pac-sites. Biosafety assessment of highly stable phage MSK genome analysis has revealed that the phage did not possess virulence genes, which indicates proper phage therapy. MSK phage potentially could be used to inhibit the multidrug-resistant bacteria, including AMP, TCN, and Colistin. Further, a comparative genome and lifestyle study of MSK phage confirmed the highest similarity level (87.18% ANI). These findings suggest it to be a new lytic isolated phage species. Finally, Blast and phylogenetic analysis of the large terminase subunit and tail fiber protein put it in Rtp viruses' genus of family Drexlerviridae.

7.
Protein Expr Purif ; 184: 105889, 2021 08.
Article in English | MEDLINE | ID: mdl-33852951

ABSTRACT

Human angiotensin converting enzyme 2 (hACE2) mediates the cell entry of both SARS-CoV and SARS-CoV2 and can be used as a drug target. The DNA encoding the truncated hACE2 (30-356aa) was cloned into pET-28a (+) and expressed in Escherichia coli Rosetta (DE3). The recombinant hACE2 (rhACE2) was purified by affinity chromatography on a Ni-NTA column and characterized with SDS-PAGE and Western blot. The binding activity of rhACE2 to Spike protein of SARS-CoV2 was evaluated in S protein-overexpressed HEK293A cells (HEK293A-SP cells) through flow cytometry. The prokaryotic expression system is able to produce approximately 75 mg protein per liter, which would be useful for infection mechanism study, and drug screening and development of SARS-CoV2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Recombinant Proteins , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/isolation & purification , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Chromatography, Affinity , Cloning, Molecular , Escherichia coli/genetics , HEK293 Cells , Humans , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
8.
Drug Des Devel Ther ; 15: 5135-5150, 2021.
Article in English | MEDLINE | ID: mdl-34992350

ABSTRACT

PURPOSE: T-DM1 is an antibody-drug conjugate (ADC) consisting of trastuzumab and DM1 linked together. T-DM1 binds to human epidermal growth factor receptor-2 (HER2) in tumors and then triggers the endocytosis of T-DM1 and release of payload. Therefore, endocytosis efficacy is considered as a critical step for the initiation of T-DM1 therapy; however, the endocytosis mechanism of T-DM1 remains poorly understood. Meanwhile, HER2 is regarded as an internalization-resistant receptor, which hinders the endocytosis and effectiveness of T-DM1. The present study is to explore the T-DM1 endocytosis pathway, which may provide insights into the internalization mechanism of ADCs and help to improve efficacy. METHODS: Confocal microscopy and flow cytometry were used to analyse T-DM1 intracellular trafficking and endocytosis efficiency, while Western blot assay was performed to detect T-DM1 degradation. RESULTS: We found that intracellular T-DM1 was increased to 50% within 12 h. T-DM1 was colocalized with cholera toxin B (CTxB), a lipid raft marker, within 2 h and then degraded in lysosome. Upon overexpression of caveolin-1 (CAV-1) and utilization of caveolae/lipid-raft disruptors, we found that temporal CAV-1 upregulation significantly facilitated T-DM1 endocytosis and degradation, whereas nystatin and lovastatin disrupted caveolae/lipid-raft structure and inhibited T-DM1 degradation. We demonstrate that T-DM1 internalizes through the lipid raft-mediated endocytosis in a CAV-1 dependent manner, rather than through the clathrin-mediated endocytosis in HER2-positive cancer cells. CONCLUSION: Our findings suggest that modulation of the caveolae/lipid-raft mediated endocytosis may be a possible option for improving the clinical therapeutic effect of T-DM1 because it plays a key role in regulating T-DM1 internalization.


Subject(s)
Ado-Trastuzumab Emtansine/pharmacology , Breast Neoplasms/drug therapy , Immunoconjugates/pharmacology , Stomach Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Endocytosis/drug effects , Female , Humans , Receptor, ErbB-2 , Tumor Cells, Cultured
9.
Pharmacol Res ; 161: 105157, 2020 11.
Article in English | MEDLINE | ID: mdl-32814169

ABSTRACT

Increasing evidence shows that Traditional Chinese Medicine (TCM) has an obvious appeal for cancer treatment, but there is still a lack of scientific investigation of its underlying molecular mechanisms. Bitter melon or bitter gourd (Momordica charantia) is an edible fruit that is commonly consumed, and it is used to cure different diseases in various ancient folk medical practices. We report that a bioactive protein, MAP30, isolated from bitter melon seeds exhibited potent anticancer and anti-chemoresistant effects on ovarian cancer cells. Functional studies revealed that MAP30 inhibited cancer cell migration, cell invasion, and cell proliferation in various ovarian cancer cells but not normal immortalized ovarian epithelial cells. When administered with cisplatin, MAP30 produced a synergistic effect on cisplatin-induced cell cytotoxicity in ovarian cancer cells. When low doses of cisplatin and MAP30 were co-injected intraperitoneally, a remarkable reduction of tumor dissemination and tumor growth was observed in an ovarian cancer ascites mouse model. Notably, blood tests confirmed that MAP30 did not cause any adverse effects on liver and kidney functions in the treated mice. MAP30 activated AMP-activated protein kinase (AMPK) signaling via CaMKKß and induced cell cycle arrest in the S-phase. MAP30 modulated cell metabolism of ovarian cancer cells via suppression of GLUT-1/-3-mediated glucose uptake, adipogenesis, and lipid droplet formation in tumor development and progression. MAP30 also induced an increase in intracellular Ca2+ ion concentration, which triggered ROS-mediated cancer cell death via apoptosis and ferroptosis. Collectively, these findings suggest that natural MAP30 is a non-toxic supplement that may enhance chemotherapeutic outcomes and benefit ovarian cancer patients with peritoneal metastases.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cisplatin/pharmacology , Energy Metabolism/drug effects , Ferroptosis/drug effects , Momordica charantia , Ovarian Neoplasms/drug therapy , Ribosome Inactivating Proteins, Type 2/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Female , Glycolysis/drug effects , Humans , Lipogenesis/drug effects , Mice, Inbred BALB C , Mice, Nude , Momordica charantia/chemistry , Neoplasm Invasiveness , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ribosome Inactivating Proteins, Type 2/isolation & purification , Xenograft Model Antitumor Assays
10.
Chem Biol Drug Des ; 95(6): 552-566, 2020 06.
Article in English | MEDLINE | ID: mdl-32166894

ABSTRACT

Antibody-based immunotherapies play a pivotal role in cancer research with efficient achievements in tumor suppression. Tumor survival is assisted by modulation of immune checkpoints to create imbalances between immune cells and cancer cell's environment. The modulation results in T-cell signal inhibition ultimately inert its proliferation and activation against various tumor cells. PD-L1, a 40 kDa transmembrane protein of B7 family, binds with PD-1 on the membrane of T cells which results in inhibition of T-cell proliferation and activation. PD-L1/PD-1 pathway has generated novel target sites for antibodies that can block PD-L1/PD-1 interactions. The blockage results in T-cell proliferation and tumor cell suppression. The PD-L1 immune checkpoint strategies' development, expression and regulations, signal inhibitions, and developmental stages of PD-L1/PD-1 antibodies are briefly discussed here in this review. All this information will provide a base for new therapeutic development against PD-L1 and PD-1 immune checkpoint interactions and will make available promising treatment options.


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Immune Checkpoint Inhibitors/chemistry , Pharmaceutical Preparations/chemistry , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Immune Checkpoint Inhibitors/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Ligands , Lymphocyte Activation/drug effects , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
11.
Genet Mol Biol ; 42(4): e20180391, 2020.
Article in English | MEDLINE | ID: mdl-31967634

ABSTRACT

Antibody-drug conjugates (ADC), precisely deliver a cytotoxic agent to antigen-expressing tumor cells by using specific binding strategies of antibodies. The ADC has shown the ability of potent bio-therapeutics development but indefinite stoichiometric linkage and full-length antibody penetration compromised the field of its advancement. Single chain variable fragments convention instead of the full-length antibody may overcome the challenge of rapid penetration and internalization. Programmed cell death ligand-1 interaction with PD-1 has recently revolutionized the field of immunotherapy. We systematically designed scPDL1-DM1 drug conjugate by linking scFv-PD-L1 proteins (scFv) with maytansinoids (DM1) cytotoxic agent through succinimidyl trans-4-maleimidylmethyl cyclohexane-1- carboxylate (SMCC) linker. Binding affinity was confirmed by immunocytochemistry, spectrophotometry and gel electrophoresis analysis. The scPDL1-DM1 showed specific binding with PD-L1 positive tumor cells and retained in vitro anti-cell proliferation activity. The intracellular trafficking of the drug was evaluated in A549 cancer cell lines, and maximum trafficking was observed after two hours of incubation. The generated drug can be utilized as a potent tool for site-specific conjugation, predicting specificity in vitro activities with extended range against PD-L1 positive cancer cells and can be utilized for further in vivo testing and clinical therapeutics development.

12.
Cytotechnology ; 71(3): 705-722, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31098772

ABSTRACT

PD-L1 is a 40 kDa trans-membrane protein of B7 family and an important T cell regulator. Binding of PD-L1 and PD-1 inhibits proliferation and activation of T cell results cell exhaustion. This phenomenon can be reversed by blocking PD-L1/PD-1 interactions with single chain variables fragment (scFv) fusion proteins and by direct inhibition of tumor cells with drug conjugates. The human phage-displayed scFv library was utilized to generate scFv against the PD-L1 antigen by affinity bio-panning. The positive clones were selected by continuous transfection of bacterial cells and sequence analysis. The binding affinity and specificity of the scFv and antibody fragments were determined by using surface plasmon resonance biosensor, western blot analysis, and immunofluorescence assay. After three rounds of panning selection, about 30% of clones have a binding affinity with targeted PD-L1 antigen. Eight positive clones with accurate sequences were isolated and analyzed for binding affinity with PD-L1 antigen. Three of those with accurate sequences and binding affinity were selected for the recombinant formation and soluble expression by Escherichia coli host machinery. The highly positive recombinant clones with the exact orientation of FR and CDR domains were developed and can be used as a drug carrier tools in ADC formation or direct inhibition of immune checkpoint in cancer immunotherapy. The conjugate achieved its initial potency and need efficient improvement to enhance direct tumor suppression and bio-therapeutics strategies enrichment.

13.
Prep Biochem Biotechnol ; 48(5): 435-445, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29561231

ABSTRACT

Glypican-3 (GPC3) is an integral membrane proteoglycan, which contains a core protein anchored to the cytoplasmic membrane through a glycosylphosphatidylinositol linkage. The glypican-3 can regulate the signaling pathways, thereby enhances cell division, growth, and apoptosis in certain cell types. It is almost nonexistent on the surface of the human normal cell membrane and highly expresses on the membrane of hepatocellular carcinoma (HCC) cells. It has been well established that GPC3 provides a useful diagnostic marker. For generating the polyclonal antibody of GPC3, we expected that GPC3 N-terminal region (amino acid sequence 26-358) could be expressed in Escherichia coli system, however, no active expression was observed after IPTG induction. Interestingly, after deletion of six proline residues from position 26 to 31 in the N-terminus, expression of recombinant GPC3 was clearly detected. We further analyzed the expressed protein deprived of six prolines, to immunize the New Zealand male rabbits for production of active antibodies. The binding affinity of antibody was analyzed by immunofluorescence analysis, immunohistochemical detection, and western blotting. The functional GPC3 N-terminal protein recombinant development, expression, purification, and the polyclonal antibody have been generated provide the basis for the diagnosis of HCC in cancer therapy.


Subject(s)
Antibodies/analysis , Carcinoma, Hepatocellular/diagnosis , Glypicans/analysis , Liver Neoplasms/diagnosis , Animals , Antibody Formation , Biomarkers, Tumor/analysis , Cell Line, Tumor , Cloning, Molecular/methods , Escherichia coli/genetics , Fluorescent Antibody Technique , Glypicans/genetics , Humans , Male , Protein Domains , Rabbits , Recombinant Proteins/analysis , Recombinant Proteins/genetics
14.
Drug Des Devel Ther ; 11: 2265-2276, 2017.
Article in English | MEDLINE | ID: mdl-28814834

ABSTRACT

Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Animals , Humans , Neoplasms/pathology
15.
Immunol Lett ; 190: 34-41, 2017 10.
Article in English | MEDLINE | ID: mdl-28684274

ABSTRACT

Programmed cell death 1 ligand 1 (PD-L1) is a trans-membrane protein highly expressed on the membrane of cancer cell, which binds inhibitory receptor of PD-1 on the T cells and attenuates anti-tumor immune response.The strategy of blocking PD1 and PD-L1 interaction has been widely used for anti-cancer drug development. The DNA encoding extracellular domain of PD-L1 was cloned and expressed with the pET30(+) and Escherichia coli BL21(DE3) system. Cloning of PD-L1 extracellular domain was confirmed by PCR and enzymatic digestion. Sequence analysis of cloned targeted genes showed 100% homology of original sequence. The recombinant protein was expressed using 1mM/mL IPTG and purified by affinity chromatography on a column of Ni-NTA and confirmed by SDS-PAGE and western blot analysis. Results showed that our constructed pET30(+)/PDL1-ECD system efficiently produces desired recombinant protein with molecular weight of 38.1kDa. The prokaryotic expression system provides an easy method to express PD-L1 extracellular domain that further facilitate the role of PD-1/PD-L1 binding inhibition and helps in valuable drug and antibodies production.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/genetics , Escherichia coli/genetics , Immunotherapy/methods , Neoplasms/therapy , Protein Domains/genetics , B7-H1 Antigen/isolation & purification , Blotting, Western , Cloning, Molecular , Gene Expression , Genetic Vectors , Humans , Neoplasms/immunology , Polymerase Chain Reaction , Recombinant Proteins/genetics , Sequence Analysis
16.
Integr Cancer Ther ; 15(3): 376-89, 2016 09.
Article in English | MEDLINE | ID: mdl-26487740

ABSTRACT

UNLABELLED: Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS: Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS: Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION: BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.


Subject(s)
Carcinogenesis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Momordica charantia/chemistry , Ovarian Neoplasms/drug therapy , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Carcinogenesis/metabolism , Cell Line, Tumor , Female , HEK293 Cells , Humans , Mice , Mice, Nude , Ovarian Neoplasms/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects
17.
Biomaterials ; 57: 1-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956192

ABSTRACT

Antibody-mediated targeting therapy has been successful in treating patients with cancers by improving the specificity and clinical efficacy. In this study, we developed a human epidermal growth factor receptor-2 (HER2) antibody-conjugated drug delivery system, using near-infrared (NIR) light-sensitive liposomes containing doxorubicin (DOX) and hollow gold nanospheres (HAuNS). We demonstrated the specific binding and selective toxicity of the system to HER2-positive tumor cells in co-cultures of HER2-positive and -negative cells. Furthermore, the HER2-antibody-mediated delivery of targeted liposomes was confirmed in a double-tumor model in nude mice simultaneously bearing HER2-positive and -negative tumors. This induced a >2-fold increased accumulation in the tumors with positive expression of HER2 than that with non-targeted liposomes (no HER2-antibody conjugation). The combination of targeted liposomes with NIR laser irradiation had significant antitumor activity in vivo with the tumor inhibition efficiency up to 92.7%, attributed to the increased accumulation in tumors and the double efficacy of photothermal-chemotherapy. Moreover, targeted liposomes did not cause systemic toxicity during the experiment period, attributable to the reduced dose of DOX, the decreased accumulation of liposomes in normal tissues, and the low irradiation power. The targeted liposomes provide a multifunctional nanotechnology platform for antibody-mediated delivery, light-trigged drug release, and combined photothermal-chemotherapy, which may have potential in the clinical treatment of cancer.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Delayed-Action Preparations/chemistry , Drug Delivery Systems , Immunoconjugates/therapeutic use , Ovarian Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , Female , Humans , Hyperthermia, Induced , Immunoconjugates/chemistry , Light , Mice , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Phototherapy , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Receptor, ErbB-2/metabolism
18.
Drug Des Devel Ther ; 7: 681-9, 2013.
Article in English | MEDLINE | ID: mdl-23946645

ABSTRACT

Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer characterized by early metastasis and high mortality. In recent years, monotherapy and combination therapy of amrubicin with cisplatin or carboplatin has been actively studied and shown promise for the treatment of extensive disease SCLC (ED-SCLC). In this article, we summarize clinical trials of both monotherapy and combination therapy with amrubicin conducted in Japan, the USA, and the European Union. The results suggest that the clinical outcome of amrubicin therapy may be associated with genetic variations in patients. Further study of combination regimens in patients of different ethnicities is warranted.


Subject(s)
Anthracyclines/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carboplatin/administration & dosage , Cisplatin/administration & dosage , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Anthracyclines/chemistry , Anthracyclines/pharmacokinetics , Anthracyclines/pharmacology , Clinical Trials as Topic , Humans
19.
Expert Opin Investig Drugs ; 22(2): 235-44, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23176362

ABSTRACT

INTRODUCTION: Small cell lung cancer (SCLC) is one of most aggressive cancers and only modest improvements have been achieved in overall survival over last 30 years. In recent years, antibody therapeutics has been actively studied and shown promise in treatment of SCLC. AREAS COVERED: A comprehensive literature search through Medline and the registry database of clinical trials (ClinicalTrials.gov) was performed to collect all relevant preclinical and clinical data. The diverse antibody therapeutics which target against different antigens including VEGE-A, CEA, IGF-1R, CD56, EpCAM, CTLA-4, gangliosides GD2 and GD3, Lewis Y and tenascin-C are now under clinical investigation for therapeutic effects in SCLC. EXPERT OPINION: During the last few decades, progresses have been made in antibody therapy for SCLC, however great challenges still remain. The major reasons are the complexity of SCLC and a lack of understanding of cancer immunology. The profound studies of signaling pathways involved in carcinogenesis, proliferation, metastasis and apoptosis in SCLC are crucial for the identification of new therapeutic targets and biomarkers. Moreover, a better understanding of the interplay between cancer and the immune system is a new direction for the design of more effective antibody therapeutics.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Discovery/methods , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Clinical Trials as Topic , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , Treatment Outcome
20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 41(3): 345-52, 2012 05.
Article in Chinese | MEDLINE | ID: mdl-22723173

ABSTRACT

With the elucidation of structures and functions, antibodies are widely applied in the diagnosis and treatment of diseases. Today, therapeutic antibodies have played ever increasing roles in the treatment of cancers. In fact, there are over 20 monoclonal antibodies which have been approved by the U.S.Food and Drug Administration (FDA) for the therapeutic use in cancers. For the gastric and colorectal cancers, there are at least 9 antibodies have been approved for cancer therapy or for clinical trials. These antibody drugs target to tumor associate antigens and can destroy the cancer cells through several mechanisms such as antibody-dependent cell cytotoxicity, complement-dependent cytotoxicity, blockage of blood nutrition and crucial signaling pathways. With the progress in gene engineering technology, the diverse structures of antibodies can be created. In addition, the antibody-conjugates with radioisotopes, toxins and cytotoxins, are also designed for targeted therapy of gastric and colorectal cancers. In this article, we review the trends in the clinical development and application of antibody drugs for future research and development of the rapidly expanding therapeutic modality in gastric and colorectal cancers.


Subject(s)
Antibodies/therapeutic use , Gastrointestinal Neoplasms/therapy , Immunization, Passive , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...