Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Neurobiol ; 61(2): 635-645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37650966

ABSTRACT

The aim of this work was to investigate the effects of electroacupuncture (EA) stimulation on the proliferation and differentiation of endogenous neural stem cells (NSCs) in rats with spinal cord injury (SCI). One hundred rats were included and randomly divided into the sham-operation (SO) group, model (MO) group, EA group, and preacupuncture stimulation (PAS) group, with 25 rats in each group. All the rats in the SO group had their spinal cord of thoracic segment T10 exposed but without SCI. In the remaining three groups, the modified Allen's weight dropping method was adopted to make SCI models. Those in the SO group and the MO group did not receive any treatment. Those in the EA group were treated with EA after the modelling was completed, which stopped when the samples were collected at each time point. The spinal cord tissue of rats was subjected to immunohistochemical staining and real-time quantitative polymerase chain reaction (PCR) to detect the expressions of neurofilament nestin and glial fibrillary acidic protein (GFAP). The Basso-Beattie-Bresnahan (BBB) score of the MO group was much lower than that of the SO group on the 3rd, 7th, and 14th days after surgery (P < 0.05). The BBB scores of the EA group and PAS group were notably higher than that of the MO group (P < 0.05). The number of nestin-, GFAP-, and MAP-2-positive cells was significantly increased in rat tissues after spinal cord injury. On the 3rd, 7th, and 14th days postoperatively, the numbers of nestin-positive cells in the EA and PAS groups were considerably higher than those in the MO group (P < 0.01). However, the numbers of GFAP-positive cells in the EA and PAS groups were considerably decreased compared with those in the MO group (P < 0.01). The positive rate of MAP-2 in the model group was significantly increased compared to that in the sham-operation group (P < 0.001). The positive rates of MAP-2 in the EA group and PAS group were significantly higher than those in the MO group (P < 0.01). After spinal cord injury, EA could activate the proliferation of endogenous NSCs and promote their differentiation into neuronal cells. Consequently, injuries were repaired, and functions were rehabilitated.


Subject(s)
Electroacupuncture , Neural Stem Cells , Spinal Cord Injuries , Rats , Animals , Rats, Sprague-Dawley , Nestin , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Neural Stem Cells/metabolism , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL