Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ChemSusChem ; 17(8): e202301161, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38123529

ABSTRACT

Current DES pretreatment is often performed under relatively severe conditions with high temperature, long time, and high DES usage. This work studied a short-time diol DES (deep eutectic solvent) pretreatment under mild conditions to fractionate the bamboo, facilitate enzymatic hydrolysis, and obtain high-quality lignin. At an optimized condition of 130 °C for only 10 min, lignin and xylan removal reached 61.34 % and 84.15 %, with residual glucan showing a ~90 % enzymatic hydrolysis yield. Equally important, the dissolved lignin could be readily recovered with 97.51 % yield, exhibiting 96.65 % ß-O-4 preservation. The fractionation and lignin protection mechanisms were unveiled by XRD, FTIR, cellulose-DP, 2D HSQC NMR, 31P NMR and GPC analysis. This study highlighted that short-time fractionation of bamboo can be achieved by a diol-based DES which is an ideal strategy to upgrade the lignocellulose biomass for high enzymatic hydrolysis yields and high-quality lignin stream.


Subject(s)
Biomass , Chemical Fractionation , Lignin , Lignin/chemistry , Hydrolysis , Chemical Fractionation/methods , Deep Eutectic Solvents/chemistry , Cellulase/chemistry , Solvents/chemistry
2.
Bioresour Technol ; 387: 129653, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573979

ABSTRACT

The failure of hemicellulose valorization in a deep eutectic solvent (DES) pretreatment has become a bottleneck that challenges its further development. To address this issue, this study developed a DES/GVL (γ-valerolactone) biphasic system for effective hemicellulose-furfural conversion, enhanced cellulose saccharification and lignin isolation. The results indicated that the biphasic system could significantly improve the lignin removal (as high as 89.1%), 86.0% higher than the monophasic DES, accompanied by âˆ¼100% hemicellulose degradation. Notably, the GVL in the biphasic solvent restricted the condensation of hemicellulose degradation products, which as a result generated large amount of furfural in the pretreatment liquid with a yield of 68.6%. With the removal of hemicellulose and lignin, cellulose enzymatic hydrolysis yield was boosted and reached near 100%. This study highlighted that the novel DES/GVL is capable of fractionating the biomass and benefiting their individual utilization, which could provide a new biorefinery configuration for a DES pretreatment.


Subject(s)
Furaldehyde , Lignin , Lignin/metabolism , Deep Eutectic Solvents , Biomass , Hydrolysis , Solvents , Cellulose , Minerals
3.
Bioresour Technol ; 362: 127771, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964916

ABSTRACT

This study proposed a renewable deep eutectic solvent (DES) pretreatment using lignin-derived guaiacol as the hydrogen bond donor. The DES showed excellent biomass fractionation efficiency after the incorporation of trace AlCl3 as the reinforcer, which removed 79.1 % lignin while preserving more than 90 % glucan. The pretreated bamboo exhibited 96.2 % glucan enzymatic hydrolysis yield at only 110 °C. The physicochemical properties of the pretreated solids were comprehensively investigated to explain how the DES fractionation overcame the biomass recalcitrance. The regenerated lignin from the DES pretreatment was also analyzed, which revealed that lignin ß-O-4 bond was significantly cleaved. This guaiacol-based DES could greatly contribute to establish a closed-loop biorefinery sequence with high lignin fractionation efficiency and great solvent recyclability.


Subject(s)
Deep Eutectic Solvents , Lignin , Biomass , Guaiacol , Hydrolysis , Lignin/chemistry , Solvents/chemistry
4.
Bioresour Technol ; 359: 127462, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35700894

ABSTRACT

A delignification saturation point (DSP) was observed for bamboo alkaline hydrogen peroxide pretreatment (AHP). Lignin removal was increased from 52.23% to ∼70% when increasing H2O2 dosage from 0% to 2% at the optimum pH, but it cannot be further reinforced as increasing the H2O2. With partial lignin preserved, the glucan hydrolysis yield was found to have a ceiling of ∼80%. This study indicated a strong association between enzymatic digestibility and lignin removal. Anatomical analysis by fluorescence microscope and confocal Raman microscope revealed that the undegradable lignin was mainly existing in the cell corner of sclerenchyma fibers, causing the DSP in the bamboo AHP. Finally, the residual lignin in pretreated bamboo was characterized with GPC, HSQC NMR, and 31P NMR, which revealed the nature of DSP. This study could help to understand the lignin modification during the AHP and further contribute to the establishment of a chemical-saving biorefinery.


Subject(s)
Hydrogen Peroxide , Lignin , Glucans , Hydrolysis , Lignin/chemistry
5.
Bioresour Technol ; 349: 126854, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176465

ABSTRACT

This study comprehensively investigated two bamboo species (i.e. Neosinocalamus affinis and Phyllostachys edulis) in terms of their cell wall ultrastructure, chemical compositions, enzymatic saccharification, and lignin structure before and after alkaline hydrogen peroxide pretreatment (AHP). During AHP, Neosinocalamus affinis (NAB) had higher delignification than Phyllostachys edulis (PEB), and thus showed better enzymatic digestibility (93.05% vs 53.57% for glucan). The fundamental chemical behavior of the bamboo lignins was analyzed by fluorescence microscope (FM), confocal Raman microscope (CRM), molecular weight analysis, and 2D HSQC-NMR. Results indicated that the PEB has thicker cell wall and more concentrated lignin in its compound middle lamella and cell corner middle lamella than NAB. Moreover, PEB lignin contains more G units (S/G of 0.95), in evident contrast to that of NAB lignin (S/G of 1.30), which favor the formation of C-C linkages, thus impeding its degradation during the AHP.


Subject(s)
Bambusa , Hydrogen Peroxide , Bambusa/chemistry , Hydrolysis , Lignin/chemistry , Sugars
6.
Bioresour Technol ; 326: 124696, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33508646

ABSTRACT

Herein, we established a novel deep eutectic solvent (DES) using lignin-derived guaiacol as hydrogen bond donor (HBD). The sole ChCl/guaiacol system was found to be inefficient for the fractionation of wheat straw (WS), while the incorporation of trace AlCl3 significantly facilitated the degradation of hemicellulose and lignin, resulting in a complete enzymatic digestibility of the pretreated WS. Further, this study revealed that the DES-degraded lignin was readily precipitated during the washing process, and thus hindered the enzymatic hydrolysis of poplar and bamboo (with hydrolysis yield of 42.03% and 71.67%, respectively). Alkali washing offers a possible approach to remove the precipitated lignin, after which a near 100% hydrolysis yield was also obtained for poplar and bamboo.


Subject(s)
Guaiacol , Lignin , Biomass , Hydrolysis , Solvents
7.
Int J Biol Macromol ; 165(Pt B): 3198-3205, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33736295

ABSTRACT

Cellulose nanocrystals (CNCs) foams have recently gained research interests because they are renewable, abundant, biodegradable and exhibit high surface area. However, the application of CNCs-based foams is still challenging, which is attributed to its lack of effective entanglements between the CNCs particles, thus lowering foam properties. In this study, a synergistic enhancement strategy was proposed, based on the in situ mineralization with hydroxyapatite (HAP) layer onto the CNCs surface, followed by a chemical crosslinking reaction. The physical and chemical structures of the composites were analyzed with SEM, STEM, XRD, FTIR, and TGA. By controlling the amount of coated HAP and the crosslinker, it is possible to manufacture a series of CNCs-based foams that are lightweight (50-75 mg/cm3), highly porous (~90%) with high water absorption (>1300%) and outstanding mechanical strength properties (as high as 1.37 MPa). Moreover, our study further indicated that these CNCs/HAP materials could increase the proliferation of rat osteoblast cells. The method developed in this study presents a novel approach to design improved networked CNCs foam, which has the potential to be used in thermal-retardant material, wastewater treatment, tissue engineering, and personal care applications.


Subject(s)
Cellulose/chemistry , Cross-Linking Reagents/chemistry , Durapatite/chemistry , Osteoblasts/cytology , Animals , Calcification, Physiologic/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Materials Testing , Nanoparticles , Osteoblasts/drug effects , Porosity , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...