Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Euro Surveill ; 29(7)2024 Feb.
Article in English | MEDLINE | ID: mdl-38362622

ABSTRACT

The Canadian Sentinel Practitioner Surveillance Network reports mid-season 2023/24 influenza vaccine effectiveness (VE) of 63% (95% CI: 51-72) against influenza A(H1N1)pdm09, lower for clade 5a.2a.1 (56%; 95% CI: 33-71) than clade 5a.2a (67%; 95% CI: 48-80), and lowest against influenza A(H3N2) (40%; 95% CI: 5-61). The Omicron XBB.1.5 vaccine protected comparably well, with VE of 47% (95% CI: 21-65) against medically attended COVID-19, higher among people reporting a prior confirmed SARS-CoV-2 infection at 67% (95% CI: 28-85).


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Influenza A Virus, H3N2 Subtype/genetics , Vaccine Efficacy , Canada/epidemiology , Sentinel Surveillance , Vaccination , Case-Control Studies
2.
Int J Radiat Oncol Biol Phys ; 118(1): 218-230, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37586613

ABSTRACT

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a common side effect of radiation therapy for thoracic tumors without effective prevention and treatment methods at present. The aim of this study was to explore whether glycyrrhetinic acid (GA) has a protective effect on RIPF and the underlying mechanism. METHODS AND MATERIALS: A RIPF mouse model administered GA was used to determine the effect of GA on RIPF. The cocultivation of regulatory T (Treg) cells with mouse lung epithelial-12 cells or mouse embryonic fibroblasts and intervention with GA or transforming growth factor-ß1 (TGF-ß1) inhibitor to block TGF-ß1 was conducted to study the mechanism by which GA alleviates RIPF. Furthermore, injection of Treg cells into GA-treated RIPF mice to upregulate TGF-ß1 levels was performed to verify the roles of TGF-ß1 and Treg cells. RESULTS: GA intervention improved the damage to lung tissue structure and collagen deposition and inhibited Treg cell infiltration, TGF-ß1 levels, epithelial mesenchymal transition (EMT), and myofibroblast (MFB) transformation in mice after irradiation. Treg cell-induced EMT and MFB transformation in vitro were prevented by GA, as well as a TGF-ß1 inhibitor, by decreasing TGF-ß1. Furthermore, reinfusion of Treg cells upregulated TGF-ß1 levels and exacerbated RIPF in GA-treated RIPF mice. CONCLUSIONS: GA can improve RIPF in mice, and the corresponding mechanisms may be related to the inhibition of TGF-ß1 secreted by Treg cells to induce EMT and MFB transformation. Therefore, GA may be a promising therapeutic candidate for the clinical treatment of RIPF.


Subject(s)
Glycyrrhetinic Acid , Lung Injury , Pulmonary Fibrosis , Radiation Injuries , Animals , Mice , Epithelial-Mesenchymal Transition , Fibroblasts/radiation effects , Glycyrrhetinic Acid/pharmacology , Lung/radiation effects , Lung Injury/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/prevention & control , Radiation Injuries/pathology , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1
3.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373186

ABSTRACT

Psoriasis is a chronic skin disease that affects millions of people worldwide. In 2014, psoriasis was recognized by the World Health Organization (WHO) as a serious non-communicable disease. In this study, a systems biology approach was used to investigate the underlying pathogenic mechanism of psoriasis and identify the potential drug targets for therapeutic treatment. The study involved the construction of a candidate genome-wide genetic and epigenetic network (GWGEN) through big data mining, followed by the identification of real GWGENs of psoriatic and non-psoriatic using system identification and system order detection methods. Core GWGENs were extracted from real GWGENs using the Principal Network Projection (PNP) method, and the corresponding core signaling pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Comparing core signaling pathways of psoriasis and non-psoriasis and their downstream cellular dysfunctions, STAT3, CEBPB, NF-κB, and FOXO1 are identified as significant biomarkers of pathogenic mechanism and considered as drug targets for the therapeutic treatment of psoriasis. Then, a deep neural network (DNN)-based drug-target interaction (DTI) model was trained by the DTI dataset to predict candidate molecular drugs. By considering adequate regulatory ability, toxicity, and sensitivity as drug design specifications, Naringin, Butein, and Betulinic acid were selected from the candidate molecular drugs and combined into potential multi-molecule drugs for the treatment of psoriasis.


Subject(s)
Psoriasis , Systems Biology , Humans , Drug Repositioning , Psoriasis/drug therapy , Psoriasis/genetics , Microarray Analysis , Neural Networks, Computer
4.
Int J Radiat Oncol Biol Phys ; 117(1): 237-251, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37054996

ABSTRACT

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a serious side effect of radiation therapy, but the underlying mechanisms are unknown. B10 cells, as negative B regulatory cells, play important roles in regulating inflammation and autoimmunity. However, the role of B10 cells in RIPF progression is unclear. The aim of this study was to determine the role of B10 cells in aggravating RIPF and the underlying mechanism. METHODS AND MATERIALS: The role of B10 cells in RIPF was studied by constructing mouse models of RIPF and depleting B10 cells with an anti-CD22 antibody. The mechanism of B10 cells in RIPF was further explored through cocultivation of B10 cells and MLE-12 or NIH3T3 cells and administration of an interleukin (IL)-10 antibody to block IL-10. RESULTS: B10 cell numbers increased significantly during the early stage in the RIPF mouse models compared with the controls. In addition, depleting B10 cells with the anti-CD22 antibody attenuated the development of lung fibrosis in mice. Subsequently, we confirmed that B10 cells induced epithelial-mesenchymal transition and the transformation of myofibroblasts via activation of STAT3 signaling in vitro. After blockade of IL-10, it was verified that IL-10 secreted by B10 cells mediates the epithelial-mesenchymal transition of myofibroblasts, thereby promoting RIPF. CONCLUSIONS: Our study uncovers a novel role for IL-10-secreting B10 cells that could be a new target of research for relieving RIPF.


Subject(s)
B-Lymphocytes, Regulatory , Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/etiology , Interleukin-10 , NIH 3T3 Cells , Epithelial-Mesenchymal Transition , Disease Models, Animal
5.
J Pers Med ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36983693

ABSTRACT

PURPOSE: To investigate the prognostic value of serum transferrin (TRF) level before intensity-modulated radiation therapy (IMRT) on radio-sensitivity and overall survival (OS) in patients with nasopharyngeal carcinoma (NPC). METHODS: From October 2012 to October 2016, a total of 348 patients with NPC in the First Affiliated Hospital of Fujian Medical University were retrospectively analyzed in our study. The concentration of serum TRF was detected by the method of enzyme-linked immunosorbent assay (ELISA). In the whole group, 46 patients received IMRT, and 302 patients received IMRT plus chemotherapy. The radio-sensitive tumor was defined when the local tumor lesions disappeared completely in the nasopharyngeal MRI scan and no tumor residues were found under the electronic nasopharyngoscope one month after the end of radiotherapy. RESULTS: The serum TRF level before IMRT was (1.34-3.89) g/L, with a median of 2.16 g/L and a mean of (2.20 ± 0.42) g/L. In the whole group, 242 cases (69.5%) were radiosensitive, and 106 cases (30.5%) were insensitive. The number of radiosensitive patients in the group of HTRF (transferrin > 2.16 g/L) and LTRF (transferrin ≤ 2.16 g/L) before radiotherapy was 129 (74.6%) and 113 (64.6%), respectively. The difference in radio-sensitivity between the two groups was statistically significant (χ2 = 4.103, p = 0.043). Logistic regression analysis showed that the level of TRF before radiotherapy (OR = 1.702; 95% CI 1.044~2.775; p = 0.033) was an independent factor for radio-sensitivity. The log-rank test showed that patients in the LTRF group achieved a significantly worse OS (χ2 = 5.388, p = 0.02) than those in the HTRF group. Cox regression analysis showed that baseline TRF level (HR = 1.706; 95% CI 1.065~2.731; p = 0.026) was an independent prognostic factor for overall survival. CONCLUSIONS: The low level of TRF before IMRT is a risk factor for radio-sensitivity and a prognostic factor for poor OS in NPC patients. It may be a promising marker to predict radio-sensitivity and OS in NPC patients who accept IMRT.

6.
J Insect Physiol ; 141: 104426, 2022.
Article in English | MEDLINE | ID: mdl-35907587

ABSTRACT

The trap-jaw ant Odontomachus monticola manipulates its hollow mandibles to generate extremely high speed to impact various objects through a catapult mechanism, making the violent collision occur between the mandible and the impacted objects, which increases the risk of structural failure. However, how the ant balances the trade-off between the powerful clamping and impact resistance by using this hollow structure remains elusive. In this combined experimental and theoretical investigation, we revealed that the hollowness ratio of the mandible plays an essential role in counterbalancing the trade-off. Micro-CT and high-speed images suggested that the hollow mandibles facilitate a high angular acceleration to 108 rad/s2 for an enormous clamping force. However, this hollowness might challenge the structural strength while collision occurs. We found that under the same actuating energy, the von Mises stress of the object collided by the natural mandible striking can reach up to 2.9 times that generated by the entirely solid mandible. We defined the efficiency ratio of the von Mises stress on the impacted object to that on the mandible and found the hollow mandible achieves a more robust balance between powerful clamping and impact resistance compared to the solid mandible.


Subject(s)
Ants , Aggression , Animals , Biomechanical Phenomena , Mandible , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...